Essential Question How can you use a formula for one measurement to write a formula for a different measurement?

ACTIVITY: Using Perimeter and Area Formulas

Work with a partner.

- **a.** Write a formula for the perimeter *P* of a rectangle.
 - Solve the formula for *w*.
 - Use the new formula to find the width of the rectangle.

- **b.** Write a formula for the area *A* of a triangle.
 - Solve the formula for *h*.
 - Use the new formula to find the height of the triangle.
- **c.** Write a formula for the circumference *C* of a circle.
 - Solve the formula for *r*.
 - Use the new formula to find the radius of the circle.

- **d.** Write a formula for the area *A* of a trapezoid.
 - Solve the formula for *h*.
 - Use the new formula to find the height of the trapezoid.
- e. Write a formula for the area *A* of a parallelogram.
 - Solve the formula for *h*.
 - Use the new formula to find the height of the parallelogram.

ACTIVITY: Using Volume Formulas

Work with a partner.

- **a.** Write a formula for the volume *V* of a prism.
 - Solve the formula for *h*.
 - Use the new formula to find the height of the prism.

- **b.** Write a formula for the volume *V* of a pyramid.
 - Solve the formula for *B*.
 - Use the new formula to find the area of the base of the pyramid.
- **c.** Write a formula for the volume *V* of a cylinder.
 - Solve the formula for *B*.
 - Use the new formula to find the area of the base of the cylinder.

- **d.** Write a formula for the volume *V* of a cone.
 - Solve the formula for *h*.
 - Use the new formula to find the height of the cone.

-What Is Your Answer?

3. IN YOUR OWN WORDS How can you use a formula for one measurement to write a formula for a different measurement? Give an example that is different from the examples on these two pages.

Use what you learned about rewriting equations and formulas to complete Exercises 3 and 4 on page 28.

1.4 Lesson

An equation that has two or more variables is called a **literal equation**. To rewrite a literal equation, solve for one variable in terms of the other variable(s).

Rewriting an Equation EXAMPLE ฦ

On Your Own

Now You're Ready Exercises 5–10

Solve the equation for y.

1. 5y - x = 10**2.** 4x - 4y = 1 **3.** 12 = 6x + 3y

EXAMPLE

Rewriting a Formula 2

A formula shows how one variable is related to one or more other variables. A formula is a type of literal equation.

$$S = \pi r^{2} + \pi r \ell \qquad \text{Write the equation.}$$

$$S - \pi r^{2} = \pi r^{2} - \pi r^{2} + \pi r \ell \qquad \text{Subtract } \pi r^{2} \text{ from each side.}$$

$$S - \pi r^{2} = \pi r \ell \qquad \text{Simplify.}$$

$$\frac{S - \pi r^{2}}{\pi r} = \frac{\pi r \ell}{\pi r} \qquad \text{Divide each side by } \pi r.$$

$$\frac{S - \pi r^{2}}{\pi r} = \ell \qquad \text{Simplify.}$$

On Your Own

Solve the formula for the red variable. Now You're Ready Exercises 14-19

- **4.** Area of rectangle: A = bh**5.** Simple interest: I = Prt
- 6. Surface area of cylinder: $S = 2\pi r^2 + 2\pi r h$

Temperature Conversion

A formula for converting from degrees Fahrenheit *F* to degrees Celsius *C* is

$$C = \frac{5}{9}(F - 32).$$

EXAMPLE 3 Rewriting the Temperature Formula-

Solve the temperature formula for *F*.

 $C = \frac{5}{9}(F - 32)$ Write the temperature formula. Use the reciprocal. $9 = \frac{9}{5} \cdot C = \frac{9}{5} \cdot \frac{5}{9}(F - 32)$ Multiply each side by $\frac{9}{5}$, the reciprocal of $\frac{5}{9}$. $\frac{9}{5}C = F - 32$ Simplify. Undo the subtraction. $9 = \frac{9}{5}C + 32 = F - 32 + 32$ Add 32 to each side. $\frac{9}{5}C + 32 = F$ Simplify.

• The rewritten formula is
$$F = \frac{9}{5}C + 32$$
.

EXAMPLE

Sun

1.000°F

Lightning 30,000°C

4 Real-Life Application

Which has the greater temperature?

Convert the Celsius temperature of lightning to Fahrenheit.

$$F = \frac{9}{5}C + 32$$

Write the rewritten formula from Example 3.
$$= \frac{9}{5}(30,000) + 32$$

Substitute 30,000 for C.
$$= 54,032$$

Simplify.

• Because 54,032 °F is greater than 11,000 °F, lightning has the greater temperature.

On Your Own

 Lake Kissimmee has a water temperature of 85 °F. Lake Okeechobee has a water temperature of 30 °C. Which lake has the greater water temperature? Explain.

1.4 Exercises

Vocabulary and Concept Check

- **1. VOCABULARY** Is $-2x = \frac{3}{8}$ a literal equation? Explain.
- 2. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.

6. $3x + \frac{1}{5}y = 7$

9. 4.2x - 1.4y = 2.1

Solve $4x - 2y = 6$ for <i>y</i> .		Solve $6 = 4x - 2y$ for y .	
Solve $4x - 2y = 6$ for <i>y</i> in	terms of <i>x</i> .	Solve $4x - 2y = 6$ for x in	terms of y

Practice and Problem Solving

- **3. a.** Write a formula for the area *A* of a triangle.
 - **b.** Solve the formula for *b*.
 - **c.** Use the new formula to find the base of the triangle.

- **4. a.** Write a formula for the volume *V* of a prism.
 - **b.** Solve the formula for *B*.
 - **c.** Use the new formula to find the area of the base of the prism.

$$V = 36 \text{ in.}^3$$

7. 6 = 4x + 9y

y = -2x + 5

2x - y = 5

10. 6y - 1.5x = 8

Solve the equation for *y*.

1 5.
$$\frac{1}{3}x + y = 4$$

8. $\pi = 7x - 2y$

- **11. ERROR ANALYSIS** Describe and correct the error in rewriting the equation.
- **12. TEMPERATURE** The formula K = C + 273.15 converts temperatures from Celsius *C* to Kelvin *K*.
 - **a.** Solve the formula for *C*.
 - **b.** Convert 300 *K* to Celsius.
- **13. INTEREST** The formula for simple interest is I = Prt.
 - **a.** Solve the formula for *t*.
 - **b.** Use the new formula to find the value of *t* in the table.

Solve the equation for the red variable.

2) 14.
$$d = rt$$

15. $e = mc^2$
17. $A = \frac{1}{2}\pi w^2 + 2\ell w$
18. $B = 3\frac{V}{h}$

- **20. WRITING** Why is it useful to rewrite a formula in terms of another variable?
- **21. TEMPERATURE** The formula $K = \frac{5}{9}(F 32) + 273.15$

converts temperatures from Fahrenheit F to Kelvin K.

- **a.** Solve the formula for *F*.
- **b.** The freezing point of water is 273.15 Kelvin. What is this temperature in Fahrenheit?
- c. The temperature of dry ice is -78.5 °C. Which is colder, dry ice or liquid nitrogen?

Navy Pier Ferris Wheel

16. R - C = P**19.** $g = \frac{1}{6}(w + 40)$

- **22. FERRIS WHEEL** The Navy Pier Ferris Wheel in Chicago has a circumference that is 56% of the circumference of the first Ferris wheel built in 1893.
 - a. What is the radius of the Navy Pier Ferris Wheel?
 - **b.** What was the radius of the first Ferris wheel?
 - **c.** The first Ferris wheel took 9 minutes to make a complete revolution. How fast was the wheel moving?

23. Geometry: The formula for the volume of a sphere is $V = \frac{4}{3}\pi r^3$. Solve the formula for r^3 . Use guess, check, and revise to find the radius of the sphere.

A		Fair	Game	Review 1	Nhat you le	arned in pro	evious grades	& les	sons	
	Mul	tiply.								
	24.	$5 imesrac{3}{4}$		25. $2.4 \times \frac{8}{3}$	} 	26. $\frac{1}{4} \times \frac{3}{2}$	$\times \frac{8}{9}$	27.	$25 imes rac{3}{5}$	$\frac{3}{5} \times \frac{1}{12}$
	28. MULTIPLE CHOICE Which of the following is not equivalent to $\frac{3}{4}$? \check{Z}									
).75	B 3	:4	C	75%		D	4:3