

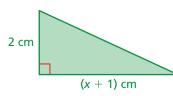
Linear equations do not always have one solution. Linear equations can also have no solution or infinitely many solutions.

When solving a linear equation that has no solution, you will obtain an equivalent equation that is not true for any value of x, such as 0 = 2.

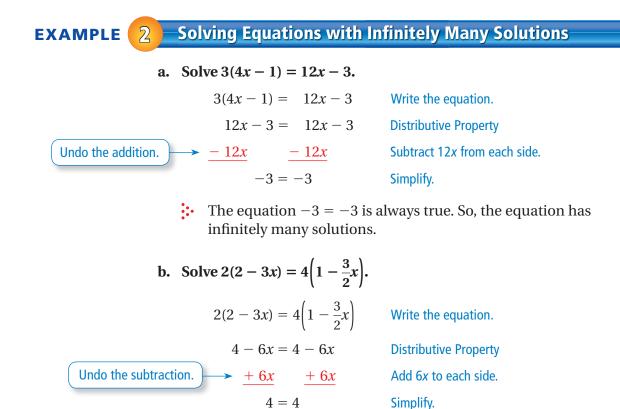
EXAMPLE
1 Solving Equations with No Solution
a. Solve
$$3 - 4x = -7 - 4x$$
.
 $3 - 4x = -7 - 4x$ Write the equation.
Undo the subtraction $+ 4x$ $+ 4x$ Add $4x$ to each side.
 $3 = -7$ \times Simplify.
b. Solve $\frac{1}{2}(10x + 7) = 5x$.
 $\frac{1}{2}(10x + 7) = 5x$ Write the equation.
 $5x + \frac{7}{2} = 5x$ Distributive Property
Undo the addition.
 $5x = \frac{5x}{2} = 0$ Subtract $5x$ from each side.
 $\frac{7}{2} = 0$ \times Simplify.
i. The equation $\frac{7}{2} = 0$ is never true. So, the equation has no solution.

Solve the equation.

- 1. x + 6 = x2. 2x + 1 = 2x 13. 3x 1 = 1 3x4. 4x 9 = 3.5x 95. $\frac{1}{3}(2x + 9) = \frac{2}{3}x$ 6. 6(5 2x) = -4(3x + 1)
- **7. GEOMETRY** Are there any values of *x* for which the areas of the figures are the same? Explain.



When solving a linear equation that has infinitely many solutions, you will obtain an equivalent equation that is true for all values of x, such as - 5 = -5.



The equation 4 = 4 is always true. So, the equation has infinitely many solutions.

Practice

Solve the equation.

8.
$$x + 8 - x = 9$$

9. $\frac{1}{2}x + \frac{1}{2}x = x + 1$
10. $3x + 15 = 3(x + 5)$
11. $\frac{1}{2}(6x - 4) = 3x - 2$

- **12.** 5x 7 = 4x 1
- **14.** 5.5 x = -4.5 x
- **16.** -3(2x-3) = -6x + 9

18.
$$\frac{3}{4}(4x-8) = -10$$

9.
$$\frac{1}{2}x + \frac{1}{2}x = x + 1$$

$$11. \quad \frac{1}{2}(6x-4) = 3x-2$$

13. 2x + 4 = -(-7x + 6)

15.
$$10x - \frac{8}{3} - 4x = 6x$$

17. 6(7x + 7) = 7(6x + 6)

19.
$$-\frac{1}{8} = 2(x-1)$$