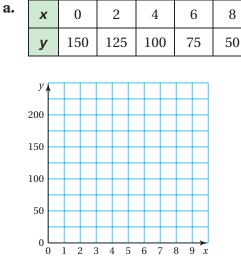
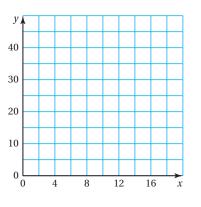
Essential Question How can you use a linear function to describe

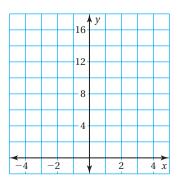
a linear pattern?

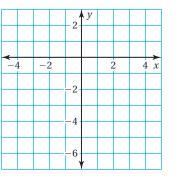

1

ACTIVITY: Finding Linear Patterns

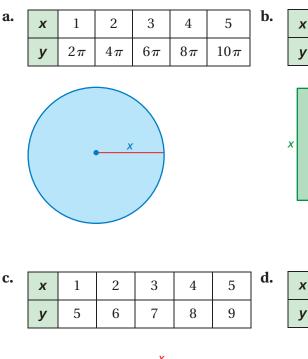

Work with a partner.

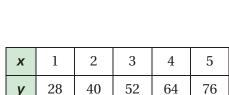
- Plot the points from the table in a coordinate plane.
- Write a linear equation for the function represented by the graph.


b.

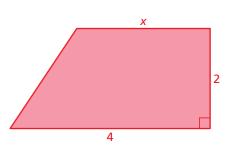

x	4	6	8	10	12
у	15	20	25	30	35

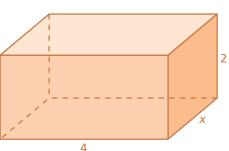
d. c. -4-20 2 4 X 4 6 8 10 12 у


x	-4	-2	0	2	4
y	1	0	-1	-2	-3


2 ACTIVITY: Finding Linear Patterns

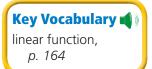
Work with a partner. The table shows a familiar linear pattern from geometry.


- Write a linear function that relates *y* to *x*.
- What do the variables x and y represent?
- Graph the linear function.



4

What Is Your Answer?


- **3. IN YOUR OWN WORDS** How can you use a linear function to describe a linear pattern?
- **4.** Describe the strategy you used to find the linear functions in Activities 1 and 2.

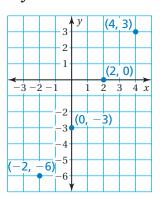
Use what you learned about linear function patterns to complete Exercises 3 and 4 on page 166.

4.3 Lesson

EXAMPLE

Finding a Linear Function Using a Graph

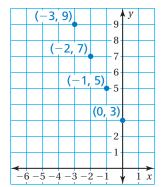
A **linear function** is a function whose graph is a line.


Use the graph to write a linear function that relates *y* to *x*.

The points lie on a line. Find the slope and *y*-intercept of the line.

slope = $\frac{\text{rise}}{\text{run}} = \frac{3}{2}$

Because the line crosses the *y*-axis at (0, -3), the *y*-intercept is -3.


• So, the linear function is
$$y = \frac{3}{2}x - 3$$
.

Finding a Linear Function Using a Table **EXAMPLE** 2

Use the table to write a linear function that relates y to x.

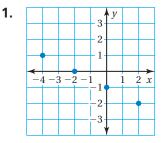
x	-3	-2	-1	0
y	9	7	5	3

Now You're Ready

Exercises 5–10

Plot the points in the table.

The points lie on a line. Find the slope and *y*-intercept of the line.


slope =
$$\frac{\text{rise}}{\text{run}} = \frac{-2}{1} = -2$$

Because the line crosses the *y*-axis at (0, 3), the *y*-intercept is 3.

So, the linear function is y = -2x + 3.

On Your Own

Use the graph or table to write a linear function that relates *y* to *x*.

2.	x	-2	-1	0	1
	У	2	2	2	2

1

Functions

164

EXAMPLE 3 Real-Life Application

Hours Kayaking, <i>x</i>	Calories Burned, y
2	600
4	1200
6	1800
8	2400

Graph the data in the table. (a) Is the domain discrete or continuous?(b) Write a linear function that relates *y* to *x*. (c) How many calories do you burn in 4.5 hours?

- **a.** Plot the points. Time can represent any value greater than or equal to 0, so the domain is continuous. Draw a line through the points.
- **b.** The slope is $\frac{600}{2} = 300$ and

the *y*-intercept is 0.

- So, the linear function is y = 300x.
 - **c.** Find the value of *y* when x = 4.5.

y = 300x	Write the equation.
= 300(4.5)	Substitute 4.5 for <i>x</i> .
= 1350	Multiply.

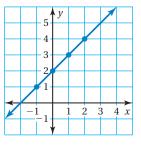
You burn 1350 calories in 4.5 hours of kayaking.

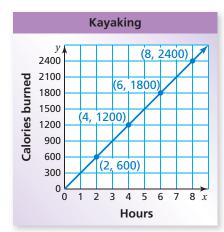
On Your Own

Hours Rock Climbing, <i>x</i>	Calories Burned, y
3	1950
6	3900
9	5850
12	7800

- **3.** Graph the data in the table.
 - a. Is the domain discrete or continuous?
 - **b.** Write a linear function that relates *y* to *x*.
 - c. How many calories do you burn in 5.5 hours?

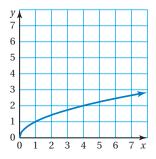
Representing a Function


Words An output is 2 more than the input.

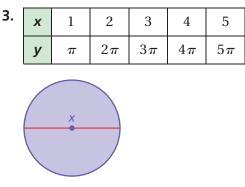

Equation y = x + 2

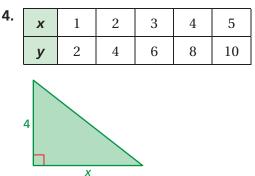
Input-Output Table

Input, <i>x</i>	-1	0	1	2
Output, y	1	2	3	4

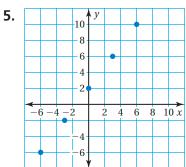


4.3 Exercises


Vocabulary and Concept Check


- **1. VOCABULARY** Describe four ways to represent a function.
- **2. VOCABULARY** Is the function represented by the graph a linear function? Explain.

Practice and Problem Solving


The table shows a familiar linear pattern from geometry. Write a linear function that relates y to x. What do the variables x and y represent? Graph the linear function.

7.

Use the graph or table to write a linear function that relates y to x.

2

1

8.	x	-2	-1	0	1
	у	-4	-2	0	2

6.					- 8 - 6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	y				
	<u>≺</u> −8	-6	-4	-2	-4-		2,	4	6	8 x

x	-8	-4	0	4
у	2	1	0	-1

•	4 - 3 - 2 - 1	y			
3 -2	-1 -2 -3 -4		2 3	3 4	1 x

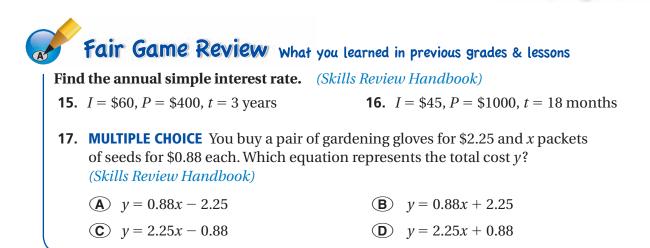
10.	x	-3	0	3	6
	У	3	5	7	9

11. MOVIES The table shows the cost *y* (in dollars) of renting *x* movies.

9.

- **a.** Graph the data. Is the domain of the graph discrete or continuous?
- **b.** Write a linear function that relates *y* to *x*.
- **c.** How much does it cost to rent three movies?

Number of Movies, x	0	1	2	4
Cost, y	0	3	6	12


166 Chapter 4 **Functions** **12. BIKE JUMPS** A bunny hop is a bike trick in which the rider brings both tires off the ground without using a ramp. The table shows the height *y* (in inches) of a bunny hop on a bike that weighs *x* pounds.

Weight, x	19	21	23
Height, y	10.2	9.8	9.4

- **a.** Graph the data. Then describe the pattern.
- **b.** Write a linear function that relates the height of a bunny hop to the weight of the bike.
- c. What is the height of a bunny hop on a bike that weighs 21.5 pounds?

Years of Education, <i>x</i>	Annual Salary, <i>y</i>	
0	28	
2	40	
4	52	
6	64	
10	88	

- **13. SALARY** The table shows a person's annual salary *y* (in thousands of dollars) after *x* years of education beyond high school.
 - **a.** Graph the data.
 - **b.** Write a linear function that relates the person's annual salary to the number of years of education beyond high school.
 - **c.** What is the annual salary of the person after 8 years of education beyond high school?
- **14.** The Heat Index is calculated using the relative humidity and the temperature. For every 1 degree increase in the temperature from 94°F to 98°F at 75% relative humidity, the Heat Index rises 4°F.
 - **a.** On a summer day, the relative humidity is 75%, the temperature is 94° F, and the Heat Index is 122° F. Construct a table that relates the temperature *t* to the Heat Index *H*. Start the table at 94° F and end it at 98° F.
 - **b.** Write a linear function that represents this situation.
 - c. Estimate the Heat Index when the temperature is 100° F.

