
Rewriting Equations and Formulas For use with Exploration 1.4

Essential Question How can you use a formula for one measurement to write a formula for a different measurement?

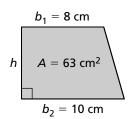
1 **EXPLORATION:** Using an Area Formula

Work with a partner.

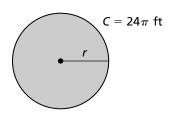
a. Write a formula for the area A of a parallelogram.

b. Substitute the given values into the formula. Then solve the equation for *b*. Justify each step.

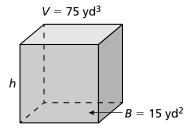
c. Solve the formula in part (a) for *b* without first substituting values into the formula. Justify each step.

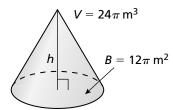

d. Compare how you solved the equations in parts (b) and (c). How are the processes similar? How are they different?

Rewriting Equations and Formulas (continued)


2 **EXPLORATION:** Using Area, Circumference, and Volume Formulas

Work with a partner. Write the indicated formula for each figure. Then write a new formula by solving for the variable whose value is not given. Use the new formula to find the value of the variable.


a. Area A of a trapezoid


b. Circumference *C* of a circle

c. Volume V of a rectangular prism

d. Volume V of a cone

Communicate Your Answer

3. How can you use a formula for one measurement to write a formula for a different measurement? Give an example that is different from those given in Explorations 1 and 2.

Core Concepts

Common Formulas

Temperature F =degrees Fahrenheit, C =degrees Celsius

$$C = \frac{5}{9}(F - 32)$$

Simple Interest I = interest, P = principal,

r =annual interest rate (decimal form),

t = time (years)

I = Prt

Distance d = distance traveled, r = rate, t = time

d = rt

Notes:

Worked-Out Examples

Example #1

Solve the literal equation for y.

$$16x + 9 = 9y - 2x$$

$$16x + 2x + 9 = 9y - 2x + 2x$$

$$18x + 9 = 9y$$

$$\frac{18x + 9}{9} = \frac{9x}{9}$$

$$2x + 1 = y$$

The rewritten literal equation is y = 2x + 1.

Practice (continued)

Example #2

REWRITING A FORMULA A common statistic used in professional football is the quarterback rating. This rating is made up of four major factors. One factor is the completion rating given by the formula

$$R = 5\left(\frac{C}{A} - 0.3\right)$$

where C is the number of completed passes and A is the number of attempted passes. Solve the formula for C.

$$R = 5\left(\frac{C}{A} - 0.3\right)$$

$$\frac{R}{5} = \frac{5\left(\frac{C}{A} - 0.3\right)}{5}$$

$$\frac{R}{5} = \frac{C}{A} - 0.3$$

$$\frac{R}{5} + 0.3 = \frac{C}{A} - 0.3 + 0.3$$

$$\frac{R}{5} + 0.3 = \frac{C}{A}$$

$$A\left(\frac{R}{5} + 0.3\right) = A \cdot \frac{C}{A}$$

$$A\left(\frac{R}{5} + 0.3\right) = C$$

When you solve the formula for C, you obtain

$$C = A\left(\frac{R}{5} + 0.3\right).$$

Practice A

In Exercises 1–6, solve the literal equation for y.

1.
$$y - 2x = 15$$

2.
$$4x + y = 2$$

$$3. \ 5x - 2 = 8 + 5y$$

4.
$$y + x = 11$$

5.
$$3x - y = -4$$

6.
$$3x + 1 = 7 - 4y$$

In Exercises 7–12, solve the literal equation for x.

7.
$$y = 10x - 4x$$

8.
$$q = 3x + 9xz$$

9.
$$r = 4 + 7x - sx$$

10.
$$y + 4x = 10x - 6$$

11.
$$4g + r = 2r - 2x$$

10.
$$y + 4x = 10x - 6$$
 11. $4g + r = 2r - 2x$ **12.** $3z + 8 = 12 + 3x - z$

1.4 Practice (continued)

In Exercises 13–16, solve the formula for the indicated variable.

- **13.** Area of a triangle: $A = \frac{1}{2}bh$; Solve for b.
- **14.** Volume of a cone: $V = \frac{1}{3}\pi r^2 h$; Solve for h.
- **15.** Ohm's Law: $I = \frac{V}{R}$; Solve for R.
- **16.** Ideal Gas Law: PV = nRT; Solve for R.
- 17. The amount A of money in an account after simple interest has been earned is given by the formula A = P + Prt where P is the principal, r is the annual interest rate in decimal form, and t is the time in years.
 - **a.** Solve the formula for *r*.

b. The amount of money in an account after interest has been earned is \$1080, the principal is \$1000, and the time is 2 years. What is the annual interest rate?

c. Solve the formula for *P*.

Practice B

In Exercises 1–6, solve the literal equation for y.

1.
$$3y - 9x = 24$$

2.
$$10 - 2y = 46$$

3.
$$3x + 5 = 9 - 4y$$

4.
$$-5x + 7y = 8x + 7$$

5.
$$3 + \frac{1}{5}y = 2x + 4$$

6.
$$10 - \frac{1}{3}y = 4 + 6x$$

In Exercises 7–14, solve the literal equation for x.

7.
$$g = 4x + 5xy$$

8.
$$w = 4ax - 9x$$

9.
$$z = 6x + px + 2$$

10.
$$t = 10 + 7x - qx$$

11.
$$ax - bx = k$$

12.
$$p = qx + rx + s$$

13.
$$11 - 4x - 3jx = w$$

14.
$$x - 8 + 3vx = v$$

15. Describe and correct the error in solving the equation for x.

$$k = ax + bx + d$$

$$k = x(a + b + d)$$

$$x = \frac{k}{a + b + d}$$

In Exercises 16–18, solve the equation for the indicated variable.

16. Simple interest: I = prt; Solve for r.

17. Volume of a box: $V = \ell wh$; Solve for w.

18. Heron's formula: 2S = a + b + c; Solve for b.

19. Coulomb's Law is given by the formula

$$F = k \frac{q_1 q_2}{d^2}.$$

The force F between two charges q_1 and q_2 in a vacuum is proportional to the product of the charges, and is inversely proportional to the square of the distance d between the two charges. Solve the formula for k.

20. You deposit \$800 in an account that earns simple interest at an annual rate of 5%. How long must you leave the money in the account to earn \$100 in interest?