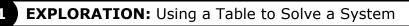
5.4

Solving Special Systems of Linear Equations For use with Exploration 5.4

Essential Question Can a system of linear equations have no solution or infinitely many solutions?



Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. You invest \$450 for equipment to make skateboards. The materials for each skateboard cost \$20. You sell each skateboard for \$20.

a. Write the cost and revenue equations. Then complete the table for your cost C and your revenue R.

<i>x</i> (skateboards)	0	1	2	3	4	5	6	7	8	9	10
C (dollars)											
<i>R</i> (dollars)											

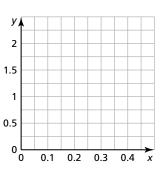
b. When will your company break even? What is wrong?

EXPLORATION: Writing and Analyzing a System

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. A necklace and matching bracelet have two types of beads. The necklace has 40 small beads and 6 large beads and weighs 10 grams. The bracelet has 20 small beads and 3 large beads and weighs 5 grams. The threads holding the beads have no significant weight.

- **a.** Write a system of linear equations that represents the situation. Let *x* be the weight (in grams) of a small bead and let *y* be the weight (in grams) of a large bead.
- **b.** Graph the system in the coordinate plane shown. What do you notice about the two lines?
- **c.** Can you find the weight of each type of bead? Explain your reasoning.

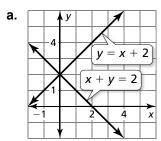


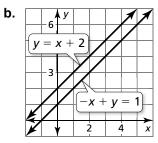
5.4 Solving Special Systems of Linear Equations (continued)

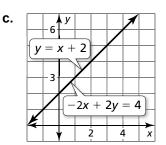
Communicate Your Answer

3. Can a system of linear equations have no solution or infinitely many solutions? Give examples to support your answers.

4. Does the system of linear equations represented by each graph have *no solution*, *one solution*, or *infinitely many solutions*? Explain.







Core Concepts

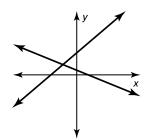
Solutions of Systems of Linear Equations

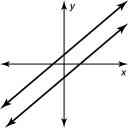
A system of linear equations can have *one solution*, *no solution*, or *infinitely many solutions*.

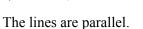
One solution

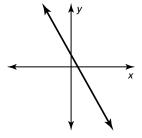
No solution

Infinitely many solutions









The lines are the same.

The lines intersect.

Notes:

Worked-Out Examples

Example #1

Solve the system of linear equations. 4x + 4y = -8 -2x - 2y = 4Solve by elimination. Step 1 4x + 4y = -8 Step 2 4x + 4y = -8 -2x - 2y = 4 Multiply by 2. -4x - 4y = 80 = 0

The equation 0 = 0 is always true. So, the solutions are all the points on the line 4x + 4y = -8. The system of linear equations has infinitely many solutions.

Example #2

Solve the system of linear equations.

9x - 15y = 24 6x - 10y = -16

Solve by elimination.

Step 1Step 29x - 15y = 24Multiply by 2.6x - 10y = -16Multiply by -3.-18x + 30y = 480 = 96

The equation 0 = 96 is never true. So, the system of linear equations has no solution.

5.4 Practice (continued)

Practice A

In Exercises 1–18, solve the system of linear equations.

1.
$$y = 3x - 7$$
2. $y = 5x - 1$ 3. $2x - 3y = 10$ $y = 3x + 4$ $y = -5x + 5$ $-2x + 3y = -10$

4.
$$x + 3y = 6$$

 $-x - 3y = 3$
5. $6x + 6y = -3$
 $-6x - 6y = 3$
6. $2x - 5y = -3$
 $3x + 5y = 8$

7.
$$2x + 3y = 1$$
8. $4x + 3y = 17$ 9. $3x - 2y = 6$ $-2x + 3y = -7$ $-8x - 6y = 34$ $-9x + 6y = -18$

160

5.4 **Practice** (continued)

10. $-2x + 5y = -21$	11. $3x - 8y = 3$	12. $18x + 12y = 24$
2x - 5y = 21	8x - 3y = 8	3x + 2y = 6

13.
$$15x - 6y = 9$$
14. $-3x - 5y = 8$ **15.** $2x - 4y = 2$ $5x - 2y = 27$ $6x + 10y = -16$ $-2x - 4y = 6$

16.
$$5x + 7y = 7$$
17. $y = \frac{2}{3}x + 7$
18. $-3x + 5y = 15$
 $7x + 5y = 5$
 $y = \frac{2}{3}x - 5$
 $9x - 15y = -45$

19. You have \$15 in savings. Your friend has \$25 in savings. You both start saving \$5 per week. Write a system of linear equations that represents this situation. Will you ever have the same amount of savings as your friend? Explain.

Practice B

In Exercises 1–3, match the system of linear equations with its graph. Then determine whether the system has *one solution, no solution,* or *infinitely many solutions.*

1. x - 3y = -3**2.** x - 3y = 0**3.** x - 2y = -4x + 2y = 43x - 6y = 6-4x + 12y = 12В. С. Α. 2 -2 2 х -2 2 2

In Exercises 4–9, solve the system of linear equations.

4. $3x - 3y = 6$	5. $12x - 8y = 10$	6. $4x - 3y = 16$
-6x + 6y = -12	-6x + 4y = 5	x + y = -3
7. $6x + 9y = -15$	8. $-x - 4y = 10$	9. $-5x + 2y = 3$
4x + 6y = 10	x + 4y = 10	10x - 4v = -6

In Exercises 10–15, use only the slopes and *y*-intercepts of the graphs of the equations to determine whether the system of linear equations has *one solution*, *no solution*, or *infinitely many solutions*. Explain.

10.	x - 3y = 9	11.	-3x + 8y = 32	12.	2x + 2y = 2
	2x - 3y = 9		6x - 16y = -64		9x + 9y = 9
13.	2x - 4y = -24	14.	y = -3x + 7	15.	5x + y = -3
	3x - 6y = -24		3x + 2y = -6		2y = -10x - 6

- **16.** Write a system of three linear equations in two variables so that two of the equations have infinitely many solutions, but the entire system has one solution.
- **17.** Consider the system of linear equations y = ax + 3 and $y = \frac{1}{a}x 2$.
 - **a.** If possible, find a value of *a* so that the system of linear equations has no solution.
 - **b.** If possible, find a value of *a* so that the system of linear equations has one solution.