5.5

Solving Equations by Graphing For use with Exploration 5.5

Essential Question How can you use a system of linear equations to solve an equation with variables on both sides?

EXPLORATION: Solving an Equation by Graphing

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Solve $2x - 1 = -\frac{1}{2}x + 4$ by graphing.

- **a.** Use the left side to write a linear equation. Then use the right side to write another linear equation.
- b. Graph the two linear equations from part (a). Find the *x*-value of the point of intersection. Check that the *x*-value is the solution of

$$2x - 1 = -\frac{1}{2}x + 4.$$

c. Explain why this "graphical method" works.

EXPLORATION: Solving Equations Algebraically and Graphically

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Solve each equation using two methods.

Method 1 Use an algebraic method.

Method 2 Use a graphical method.

Is the solution the same using both methods?

a.
$$\frac{1}{2}x + 4 = -\frac{1}{4}x + 1$$

b. $\frac{2}{3}x + 4 = \frac{1}{3}x + 3$

5.5 Solving Equations by Graphing (continued)

c.
$$-\frac{2}{3}x - 1 = \frac{1}{3}x - 4$$

d. $\frac{4}{5}x + \frac{7}{5} = 3x - 3$

e.
$$-x + 2.5 = 2x - 0.5$$

f. $-3x + 1.5 = x + 1.5$

Communicate Your Answer

- **3.** How can you use a system of linear equations to solve an equation with variables on both sides?
- **4.** Compare the algebraic method and the graphical method for solving a linear equation with variables on both sides. Describe the advantages and disadvantages of each method.

Core Concepts

Solving Linear Equations by Graphing

Step 1 To solve the equation ax + b = cx + d, write two linear equations.

Step 2 Graph the system of linear equations. The *x*-value of the solution of the system of linear equations is the solution of the equation ax + b = cx + d.

Notes:

Worked-Out Examples

Example #1

Solve the equation by graphing. Determine whether the equation has one solution, no solution, or infinitely many solutions.

5x - 4 = 5x + 1
Graph the system.
y = 5x - 4
y = 5x + 1

The lines have the same slope but different *y*-intercepts. So, they are parallel. Because parallel lines never intersect, there is no point that is a solution of both linear equations. So, the original equation has no solution.

Example #2

Solve the equation by graphing. Check your solutions.

Equation 2 |2x + 5| = |-2x + 1|2x + 5 = -(-2x + 1)Equation 1 y = 2x + 52x + 5 = 2x - 12x + 5 = -2x + 1(-1, 3)y = -2x + 1System 1 System 2 y = 2x + 5y = 2x + 54 x y = -2x + 1y = 2x - 1The graphs intersect

at (-1, 3).

$$y = 2x + 5$$

$$y = 2x - 1$$

The graphs do not intersect. So, this system has no solution.

Date

5.5 Practice (continued)

Check |2x + 5| = |-2x + 1| $|2(-1) + 5| \stackrel{?}{=} |-2(-1) + 1|$ $|-2 + 5| \stackrel{?}{=} |2 + 1|$ $|3| \stackrel{?}{=} |3|$ $3 = 3 \checkmark$

So, the solution is x = -1.

Practice A

In Exercises 1–9, solve the equation by graphing. Check your solution(s).

1. 2x - 7 = -2x + 9

3. 4x + 1 = -2x - 5

2. 3x = x - 4

4.
$$-x - 4 = 3(x - 4)$$

		- 4 J	/	
-4	-2		2	4 x
		-4-		
		-8		
		12		

5.5 Practice (continued)

5.
$$-3x - 5 = 6 - 3x$$
 6. $7x - 14 = -7(2 - x)$

_					y				
-4	4	-2	2			2	2	4	1 x
				-4	1				
				-8					
				12					
				16	1				

7. |3x| = |2x + 10|

		-12	y I				
		- 6					
-4	-2			2	2	4	1 x
-4	-2	6		2	2		+ x

8. |x-1| = |x+3|

		-4-	y				
		- 2					
-4 -	-2			Z	2	4	\overrightarrow{x}
-4 -	-2	-2		2	2	4	\rightarrow

9. |x+4| = |2-x|

Practice B

In Exercises 1 and 2, use the graph to solve the equation. Check your solution.

In Exercises 3–6, solve the equation by graphing. Check your solution.

3. -3x + 5 = x + 1 **4.** $\frac{1}{4}x - 6 = -2x + 3$ **5.** 3x + 6 = 3(x + 2)**6.** -5(x + 2) = 4x - 1

In Exercises 7 and 8, solve the equation by graphing. Determine whether the equation has one solution, no solution, or infinitely many solutions.

7. -2(-x-1) = 2x + 2**8.** $\frac{1}{4}(12x - 10) = 3x + 2$

In Exercises 9 and 10, solve the equation by graphing. Check your solutions.

9. |x+2| = |5-x|**10.** 3|x-1| = |2x+8|

In Exercises 11 and 12, use a graphing calculator to solve the equation.

- **11.** 0.6x 1.1 = 0.5x 0.4 **12.** 1.3x + 0.8 = 2.5x 0.4
- **13.** Determine one set of values of a and b of the equation 2x 3 = ax + b in each situation.
 - **a.** The equation has no solution.
 - **b.** The equation has infinitely many solutions.
 - **c.** x = 4 is a solution.
- **14.** You need to hire a taxi. Taxi A charges \$9.25 plus \$1.50 per mile. Taxi B charges \$10.50 plus \$1.25 per mile. Use a graphing calculator to find the number of miles for which the total costs are the same for each taxi.