6.5

Modeling with Exponential and Logarithmic Functions For use with Exploration 6.5

Essential Question How can you recognize polynomial, exponential, and logarithmic models?

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Match each type of model with the appropriate scatter plot. Use a regression program to find a model that fits the scatter plot.

a. linear (positive slope) b. linear (negative slope) c. quadratic

d. cubic

e. exponential

f. logarithmic

	y						
- 8							
- 4 -				_			
-							>
-	┝─╹	•	2	ł	e	2	X
- <u>+</u> 4	\mathbf{k}					-	

F.

2

6.5 Modeling with Exponential and Logarithmic Functions (continued)

EXPLORATION: Exploring Gaussian and Logistic Models

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Two common types of functions that are related to exponential functions are given. Use a graphing calculator to graph each function. Then determine the domain, range, intercept, and asymptote(s) of the function.

a. Gaussian Function: $f(x) = e^{-x^2}$ **b.** Logistic Function: $f(x) = \frac{1}{1 + e^{-x}}$

Communicate Your Answer

- 3. How can you recognize polynomial, exponential, and logarithmic models?
- **4.** Use the Internet or some other reference to find real-life data that can be modeled using one of the types given in Exploration 1. Create a table and a scatter plot of the data. Then use a regression program to find a model that fits the data.

6.5 Practice For use after Lesson 6.5

Notes:

Worked-Out Examples

Example #1

Write an exponential function $y = ab^x$ whose graph passes through the given points.

(3, 27), (5, 243)

Step 1 Substitute the coordinates (3, 27) and (5, 243) into $y = ab^x$.

$$27 = ab^3$$
$$243 = ab^5$$

Step 2 Solve for *a* in Equation 1 to obtain $a = \frac{27}{b^3}$ and substitute this expression for *a* into Equation 2.

$$243 = \left(\frac{27}{b^3}\right)b^5$$
$$243 = 27b^2$$
$$9 = b^2$$
$$3 = b$$

Step 3 Determine that $a = \frac{27}{b^3} = \frac{27}{3^3} = 1$. So, the exponential function is $y = 1 \cdot (3^x) = 3^x$.

Example #2

Determine whether the data show an exponential relationship. Then write a function that models the data.

x	1	6	11	16	21
У	12	28	76	190	450

Sample answer: Make a scatter plot of the data.

-480	y					•	•
-360							
-240							
-120							
	•	•					
	1	6	1	2	1	8	x

The data appear exponential. Choose any two points to write a model, such as (1, 12) and (6, 28). Substitute the coordinates of these points into $y = ab^x$.

$$12 = ab^1$$

$$28 = ab^{6}$$

Solve for *a* in the first equation to obtain $a = \frac{12}{b}$. Substitute to obtain $b \approx 1.19$ and $a \approx 10.13$. So, an exponential function that models the data is $y = 10.13(1.19^x)$.

> Copyright © Big Ideas Learning, LLC All rights reserved.

6.5 Practice (continued)

Practice A

In Exercises 1 and 2, determine the type of function represented by the table. Explain your reasoning.

1.	x	6	7	8	9	10	11
	у	34	47	62	79	98	119

2.	x	-5	-3	-1	1	3	5
	у	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{9}{5}$	$\frac{27}{5}$	$\frac{81}{5}$	$\frac{243}{5}$

In Exercises 3–6, write an exponential function $y = ab^X$ whose graph passes through the given points.

3. (1, 12), (3, 108) **4.** (-1, 2), (3, 32)

5. (2,9), (4,324) **6.** (-2,2), (1,0.25)

6.5 Practice (continued)

7. An Olympic swimmer starts selling a new type of goggles. The table shows the number *y* of goggles sold during a 6-month period.

Months, <i>x</i>	1	2	3	4	5	6
Goggles sold, y	28	47	64	79	97	107

a. Create a scatterplot of the data.

b. Create a scatterplot of the data pairs $(x, \ln y)$ to show that an exponential model should be a good fit for the original data pairs (x, y). Write a function that models the data.

- **c.** Use a graphing calculator to write an exponential model for the data.
- d. Use each model to predict the number of goggles sold after 1 year.

Practice B

In Exercises 1 and 2, determine the type of function represented by the table. Explain your reasoning.

1.	x	0	2	4	6	8	2.	x	0	1
	v	$\frac{1}{2}$	$\frac{1}{2}$	2	8	32		y	8	12
	,	8	2							

In Exercises 3–8, write an exponential function $y = ab^x$ whose graph passes through the given points.

- **3.** (1, 10), (2, 20)
 4. (1, 18), (3, 162)
 5. (2, 36), (3, 72)

 6. (3, 375), (4, 1875)
 7. (2, 3.6), (5, 777.6)
 8. (2, 8), (5, 512)
- **9.** Describe and correct the error in determining the type of function represented by the data.

The outputs have a common ratio of 2, but the outputs are negative, so the data does not represent a recognizable function.

In Exercises 10 and 11, determine whether the data show an exponential relationship. Then write a function that models the data.

10.	x	1	3	5	7	
	у	64	32	16	8	

11.	x	0	10	20	30	40
	у	0	15	30	45	60

2

18

3

27

12. Use a graphing calculator to find an exponential model for the data in the table.

x	2	5	6	8	9
y	7.65	25.819	38.728	87.138	130.71