2

7.3 Special Products of Polynomials For use with Exploration 7.3

Essential Question What are the patterns in the special products $(a + b)(a - b), (a + b)^2$, and $(a - b)^2$?

Work with a partner. Write the product of two binomials modeled by each rectangular array of algebra tiles.

a.
$$(x + 2)(x - 2) =$$

b. $(2x - 1)(2x + 1) =$
c. $(x + 2)(x - 2) =$
b. $(2x - 1)(2x + 1) =$
c. $(x + 2)(x - 2) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x - 2)(x + 1) =$
c. $(x + 2)(x + 2)(x + 1) =$
c. $(x$

EXPLORATION: Finding the Square of a Binomial Pattern

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Draw the rectangular array of algebra tiles that models each product of two binomials. Write the product.

a.
$$(x + 2)^2 =$$
_____ **b.** $(2x - 1)^2 =$ _____

7.3 Special Products of Polynomials (continued)

Communicate Your Answer

3. What are the patterns in the special products $(a + b)(a - b), (a + b)^2$, and $(a - b)^2$?

4. Use the appropriate special product pattern to find each product. Check your answers using algebra tiles.

a.
$$(x+3)(x-3)$$
 b. $(x-4)(x+4)$ **c.** $(3x+1)(3x-1)$

d.
$$(x + 3)^2$$
 e. $(x - 2)^2$ **f.** $(3x + 1)^2$

Name

Core Concepts

Square of a Binomial Pattern

Algebra

Example

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(x + 5)^{2} = (x)^{2} + 2(x)(5) + (5)^{2}$$

$$= x^{2} + 10x + 25$$

$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$

$$(2x - 3)^{2} = (2x)^{2} - 2(2x)(3) + (3)^{2}$$

$$= 4x^{2} - 12x + 9$$

Notes:

Sum and Difference Pattern

Algebra

Example

 $(a + b)(a - b) = a^2 - b^2$ $(x + 3)(x - 3) = x^2 - 9$

Notes:

Worked-Out Examples

Example #1

Find the product

$$(5p + 2)^2 = (5p)^2 + 2(5p)(2) + 2^2$$

= $25p^2 + 20p + 4$

Example #2

Find the product

$$(2k - 4)(2k + 4) = (2k)^2 - 4^2$$
$$= 4k^2 - 16$$

7.3 Practice (continued)

Practice A

In Exercises 1–18, find the product.

1.
$$(a+3)^2$$
 2. $(b-2)^2$ **3.** $(c+4)^2$

4.
$$(-2x+1)^2$$
 5. $(3x-2)^2$ **6.** $(-4p-3)^2$

7.
$$(3x + 2y)^2$$
 8. $(2a - 3b)^2$ **9.** $(-4c + 5d)^2$

10.
$$(x-3)(x+3)$$
 11. $(q+5)(q-5)$ **12.** $(t-11)(t+11)$

7.3 Practice (continued)

13.
$$(5a-1)(5a+1)$$
 14. $(\frac{1}{4}b+1)(\frac{1}{4}b-1)$ **15.** $(\frac{1}{2}c+\frac{1}{3})(\frac{1}{2}c-\frac{1}{3})$

16.
$$(-m+2n)(-m-2n)$$
 17. $(-3j-2k)(-3j+2k)$ **18.** $\left(6a+\frac{1}{2}b\right)\left(-6a+\frac{1}{2}b\right)$

In Exercises 19–24, use special product patterns to find the product.

19. $18 \bullet 22$ **20.** $49 \bullet 51$ **21.** $19\frac{3}{5} \bullet 20\frac{2}{5}$

22.
$$(31)^2$$
 23. $(20.7)^2$ **24.** $(109)^2$

25. Find k so that $kx^2 - 12x + 9$ is the square of a binomial.

Practice B

In Exercises 1–9, find the product.

1. $(-6p+3)^2$ 2. $(3c-d)^2$ 3. $(5x+2y)^2$ 4. (9+4q)(9-4q)5. $(\frac{2}{3}+g)(\frac{2}{3}-g)$ 6. (3m+8n)(3m-8n)7. (8-3u)(8+3u)8. (-c+9)(-c-9)9. (-3s-7t)(-3s+7t)

In Exercises 10–12, use special product patterns to find the product.

- **10.** 27^2 **11.** 40.5^2 **12.** $5\frac{1}{4} \bullet 4\frac{3}{4}$
- **13.** Describe and correct the error in finding the product.

$$(x + 5)(x - 5) = x^{2} + 5^{2}$$
$$= x^{2} + 25$$

- **14.** A circular helicopter landing pad has a radius of 200 feet. Inside the circular pad, red paint covers the outer area evenly, with a width of x feet. White paint covers the inner area.
 - **a.** Write a polynomial that represents the area of the circle that is painted white. Write your answer in terms of π .
 - **b.** Use the polynomial in part (a) to find the area of the circle that is painted white when x = 100.

In Exercises 15 and 16, find the product.

- **15.** $(3x^2 + 7y^2)^2$ **16.** $(z^4 3w^3)(z^4 + 3w^3)$
- **17.** Find k so that $25x^2 + 40x + k$ is the square of a binomial.
- **18.** Find two numbers a and b such that $(a b)^2 < (a + b)(a b) < (a + b)^2$. Find two numbers a and b such that this is not true.