1

8.6

Essential Question How do the constants *a*, *h*, and *k* affect the graph of the quadratic function $g(x) = a(x-h)^2 + k$?

EXPLORATION: Identifying Graphs of Quadratic Functions

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Match each quadratic function with its graph. Explain your reasoning. Then use a graphing calculator to verify that your answer is correct.

a.
$$g(x) = -(x-2)^2$$
 b. $g(x) = (x-2)^2 + 2$ **c.** $g(x) = -(x+2)^2 - 2$

d.
$$g(x) = 0.5(x-2)^2 - 2$$
 e. $g(x) = 2(x-2)^2$ **f.** $g(x) = -(x+2)^2 + 2$

Date

8.6 Transformations of Quadratic Functions (continued)

Communicate Your Answer

2. How do the constants *a*, *h*, and *k* affect the graph of the quadratic function $g(x) = a(x - h)^2 + k?$

3. Write the equation of the quadratic function whose graph is shown. Explain your reasoning. Then use a graphing calculator to verify that your equation is correct.

Core Concepts

Horizontal Translations

$$f(x) = x^{2}$$
$$f(x - h) = (x - h)^{2}$$

- shifts left when h < 0
- shifts right when h > 0

Vertical Translations

$$f(x) = x^{2}$$
$$f(x) + k = x^{2} + k$$

- shifts down when k < 0
- shifts up when k > 0

Notes:

Reflections in the x-Axis $f(x) = x^{2}$ $-f(x) = -(x^{2}) = -x^{2}$ $y = x^{2}$ $y = -x^{2}$

flips over the *x*-axis

Reflections in the y-Axis $f(x) = x^{2}$ $f(-x) = (-x)^{2} = x^{2}$ $y = x^{2}$ is its own

reflection in the y-axis.

8.6 Practice (continued)

Horizontal Stretches and Shrinks

- horizontal stretch (away from *y*-axis) when 0 < a < 1
- horizontal shrink (toward *y*-axis) when *a* > 1

Vertical Stretches and Shrinks

- vertical stretch (away from *x*-axis) when *a* > 1
- vertical shrink (toward *x*-axis) when 0 < a < 1

Notes:

Worked-Out Examples

Example #1

Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

 $g(x) = (x - 9)^2 + 5$

Notice that the function is of the form $g(x) = (x - h)^2 + k$. Rewrite the function to identify *h* and *k*.

 $g(x) = (x - (9))^2 + (5)$

Because h = -9 and k = 5, the graph of g is a translation 9 units right and 5 units up of the graph of f.

8.6 Practice (continued)

Example #2

Describe the transformation of the graph of the parent quadratic function. Then identify the vertex.

$$f(x) = \frac{1}{2}(x-1)^2$$

The transformation is a horizontal translation to the right 1 unit, followed by a vertical shrink by a factor of $\frac{1}{2}$; The vertex is (1, 0).

Practice A

In Exercises 1–6, describe the transformation of $f(x) = x^2$ represented by g. Then graph the function.

7. Consider the function $f(x) = -10(x - 5)^2 + 7$. Describe the transformation of the graph of the parent quadratic function. Then identify the vertex.

Practice B

In Exercises 1–6, describe the transformation of $f(x) = x^2$ represented by *g*. Then graph each function.

1. $g(x) = x^2 + 3$ **2.** $g(x) = (x + 5)^2$ **3.** $g(x) = (x + 6)^2 - 4$ **4.** $g(x) = (x - 1)^2 + 5$ **5.** $g(x) = (x - 4)^2 + 3$ **6.** $g(x) = (x + 8)^2 - 2$

In Exercises 7–9, describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

7. $g(x) = -\left(\frac{1}{2}x\right)^2$ **8.** $g(x) = \frac{1}{3}x^2 + 2$ **9.** $g(x) = \frac{1}{3}(x+1)^2$

In Exercises 10 and 11, describe the transformation of the graph of the parent quadratic function. Then identify the vertex.

10. $f(x) = -3(x+6)^2 - 4$ **11.** $f(x) = \frac{1}{3}(x-2)^2 + 1$

In Exercises 12 and 13, write a rule for *g* described by the transformations of the graph of *f*. Then identify the vertex.

- **12.** $f(x) = x^2$; vertical shrink by a factor of $\frac{1}{2}$ and a reflection in the *y*-axis, followed by a translation 2 units left
- **13.** $f(x) = (x + 4)^2 + 2$; horizontal shrink by a factor of $\frac{1}{3}$ and a translation 2 units up, followed by a reflection in the *x*-axis
- 14. Justify each step in writing a function g based on the transformations of $f(x) = 4x^2 3x$.

translation 3 units up followed by a reflection in the *y*-axis

h(x) = f(x) + 3	
$= 4x^2 - 3x + 3$	
g(x) = h(-x)	
$= 4x^2 + 3x + 3$	