2.2

Properties of Radicals

For use with Exploration 2.2

Essential Question How can you multiply and divide square roots?

EXPLORATION: Operations with Square Roots

Work with a partner. For each operation with square roots, compare the results obtained using the two indicated orders of operations. What can you conclude?

a. Square Roots and Addition

Is $\sqrt{36} + \sqrt{64}$ equal to $\sqrt{36 + 64}$?

In general, is $\sqrt{a} + \sqrt{b}$ equal to $\sqrt{a+b}$? Explain your reasoning.

b. Square Roots and Multiplication

Is $\sqrt{4} \cdot \sqrt{9}$ equal to $\sqrt{4 \cdot 9}$?

In general, is $\sqrt{a} \cdot \sqrt{b}$ equal to $\sqrt{a \cdot b}$? Explain your reasoning.

c. Square Roots and Subtraction

Is $\sqrt{64} - \sqrt{36}$ equal to $\sqrt{64 - 36}$? In general, is $\sqrt{a} - \sqrt{b}$ equal to $\sqrt{a - b}$? Explain your reasoning.

d. Square Roots and Division

Is
$$\frac{\sqrt{100}}{\sqrt{4}}$$
 equal to $\sqrt{\frac{100}{4}}$
In general, is $\frac{\sqrt{a}}{\sqrt{b}}$ equal to $\sqrt{\frac{a}{b}}$? Explain your reasoning.

2.2 **Properties of Radicals** (continued)

2

EXPLORATION: Writing Counterexamples

Work with a partner. A **counterexample** is an example that proves that a general statement is *not* true. For each general statement in Exploration 1 that is not true, write a counterexample different from the example given.

Communicate Your Answer

- 3. How can you multiply and divide square roots?
- **4.** Give an example of multiplying square roots and an example of dividing square roots that are different from the examples in Exploration 1.
- **5.** Write an algebraic rule for each operation.
 - **a.** the product of square roots
 - **b.** the quotient of square roots

Name

Core Concepts

Product Property of Square Roots

Words The square root of a product equals the product of the square roots of the factors.

Numbers $\sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$

Algebra

 $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$, where $a, b \ge 0$

Notes:

Quotient Property of Square Roots

WordsThe square root of a quotient equals the quotient of the square roots of
the numerator and denominator.

Numbers $\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$ Algebra $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$, where $a \ge 0$ and b > 0

Notes:

Date

2.2 Practice (continued)

Worked-Out Examples

Example #1

Simplify the expression.

$$\sqrt{48n^5} = \sqrt{16 \cdot 3 \cdot n^4 \cdot n}$$
$$= \sqrt{16} \cdot \sqrt{3} \cdot \sqrt{n^4} \cdot \sqrt{n}$$
$$= 4 \cdot \sqrt{3} \cdot n^2 \cdot \sqrt{n}$$
$$= 4 \cdot n^2 \cdot \sqrt{3} \cdot \sqrt{n}$$
$$= 4n^2\sqrt{3n}$$

Example #2

Simplify the expression.

$$\frac{\sqrt{5}}{\sqrt{48}} = \frac{\sqrt{5}}{\sqrt{16 \cdot 3}}$$
$$= \frac{\sqrt{5}}{\sqrt{16} \cdot \sqrt{3}}$$
$$= \frac{\sqrt{5}}{4 \cdot \sqrt{3}}$$
$$= \frac{\sqrt{5}}{4 \cdot \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{\sqrt{15}}{4 \cdot \sqrt{9}}$$
$$= \frac{\sqrt{15}}{4 \cdot 3}$$
$$= \frac{\sqrt{15}}{12}$$

Practice A

In Exercises 1–12, simplify the expression.

1.
$$\sqrt{24}$$
 2. $-\sqrt{48}$ **3.** $\sqrt{162g^6}$ **4.** $-\sqrt{512h^7}$

5.
$$\sqrt{\frac{25}{64}}$$
 6. $-\sqrt{\frac{6}{49}}$ **7.** $-\sqrt{\frac{196}{r^4}}$ **8.** $\sqrt{\frac{49x^3}{64y^2}}$

Copyright © Big Ideas Learning, LLC All rights reserved.

Name

2.2 Practice (continued)

In Exercises 13–20, simplify the expression.

9.
$$\sqrt[3]{-135}$$
 10. $\sqrt[3]{729}$ 11. $-\sqrt[3]{-192x^5}$ 12. $\sqrt[3]{\frac{12a^6}{512b^4}}$
13. $\frac{\sqrt{15}}{\sqrt{500}}$ 14. $\sqrt{\frac{8}{100}}$ 15. $\frac{\sqrt{3x^2y^3}}{\sqrt{80xy^3}}$ 16. $\frac{8}{\sqrt[3]{16}}$
17. $\frac{5}{-3-3\sqrt{3}}$ 18. $\frac{3}{4+4\sqrt{5}}$ 19. $\frac{4}{\sqrt{2}-5\sqrt{3}}$ 20. $\frac{\sqrt{5}}{\sqrt{3}+\sqrt{5}}$

21. The ratio of the length to the width of a *golden rectangle* is $(1 + \sqrt{5})$: 2. The length of a golden rectangle is 62 meters. What is the width? Round your answer to the nearest meter.

In Exercises 22–27, simplify the expression.

22.
$$3\sqrt{8} + 3\sqrt{2}$$
 23. $2\sqrt{18} - 2\sqrt{20} - 2\sqrt{5}$ **24.** $3\sqrt{12} + 3\sqrt{18} + 2\sqrt{27}$

25.
$$2\sqrt{5}(\sqrt{6}+2)$$
 26. $(\sqrt{7}-\sqrt{3})(\sqrt{7}+\sqrt{3})$ **27.** $\sqrt[3]{2}(\sqrt[3]{108}-\sqrt[3]{135})$

Practice B

In Exercises 1–9, simplify the expression.

1.	$\sqrt{54}$	2.	$\sqrt{25y^2}$	3.	$-\sqrt{18n^3}$
4.	$\sqrt{\frac{29}{100}}$	5.	$\sqrt{\frac{p^3}{49}}$	6.	$\sqrt{\frac{36}{9x^2}}$
7.	$\sqrt[3]{32q^2}$	8.	$\sqrt[3]{\frac{9d}{-8}}$	9.	$-\sqrt[3]{\frac{60x^2}{729y^3}}$

10. Describe and correct the error in simplifying the expression.

Х	$\sqrt{\frac{30}{25}} =$	$\sqrt{\frac{6}{5}}$
	=	$\frac{\sqrt{6}}{\sqrt{5}}$

In Exercises 11–13, write a factor that you can use to rationalize the denominator of the expression.

11.
$$\frac{2}{\sqrt{7y}}$$
 12. $\frac{8}{\sqrt[3]{k^2}}$ **13.** $\frac{2}{3-\sqrt{6}}$

In Exercises 14–22, simplify the expression.

14.
$$\frac{4}{\sqrt{3}}$$
15. $\frac{\sqrt{2}}{\sqrt{45}}$
16. $\frac{1}{\sqrt{6t}}$

17. $\sqrt{\frac{5h^2}{7}}$
18. $\frac{\sqrt{27}}{\sqrt{2d^3}}$
19. $\frac{25}{\sqrt[3]{4}}$

20. $\frac{5}{7-\sqrt{2}}$
21. $\frac{\sqrt{3}}{8+\sqrt{7}}$
22. $\frac{\sqrt{5}}{\sqrt{5}-\sqrt{7}}$

23. Use the special product pattern $(a - b)(a^2 + ab + b^2) = a^3 - b^3$ to simplify the

expression
$$\frac{3}{\sqrt[3]{x-1}}$$
.