3.2

Properties of Rational Exponents and RadicalsFor use with Exploration 3.2

Essential Question How can you use properties of exponents to simplify products and quotients of radicals?

ı

EXPLORATION: Reviewing Properties of Exponents

Work with a partner. Let *a* and *b* be real numbers. Use the properties of exponents to complete each statement. Then match each completed statement with the property it illustrates.

Statement

a.
$$a^{-2} =$$
_____, $a \neq 0$

b.
$$(ab)^4 =$$

c.
$$(a^3)^4 =$$

d.
$$a^3 \bullet a^4 =$$

e.
$$\left(\frac{a}{b}\right)^3 = _{---}, b \neq 0$$

f.
$$\frac{a^6}{a^2} =$$
_____, $a \neq 0$

g.
$$a^0 =$$
______, $a \neq 0$

Property

- **A.** Product of Powers
- **B.** Power of a Power
- **C.** Power of a Product
- **D.** Negative Exponent
- E. Zero Exponent
- **F.** Quotient of Powers
- **G.** Power of a Quotient

2

EXPLORATION: Simplifying Expressions with Rational Exponents

Work with a partner. Show that you can apply the properties of integer exponents to rational exponents by simplifying each expression. Use a calculator to check your answers.

a.
$$5^{2/3} \bullet 5^{4/3}$$

b.
$$3^{1/5} \bullet 3^{4/5}$$

c.
$$(4^{2/3})^3$$

d.
$$(10^{1/2})^4$$

e.
$$\frac{8^{5/2}}{8^{1/2}}$$

$$\mathbf{f.} \quad \frac{7^{2/3}}{7^{5/3}}$$

.2 Properties of Rational Exponents and Radicals (continued)

EXPLORATION: Simplifying Products and Quotients of Radicals

Work with a partner. Use the properties of exponents to write each expression as a single radical. Then evaluate each expression. Use a calculator to check your answers.

a.
$$\sqrt{3} \cdot \sqrt{12}$$

b.
$$\sqrt[3]{5} \cdot \sqrt[3]{25}$$

c.
$$\sqrt[4]{27} \cdot \sqrt[4]{3}$$

d.
$$\frac{\sqrt{98}}{\sqrt{2}}$$

e.
$$\frac{\sqrt[4]{4}}{\sqrt[4]{1024}}$$

f.
$$\frac{\sqrt[3]{625}}{\sqrt[3]{5}}$$

Communicate Your Answer

- **4.** How can you use properties of exponents to simplify products and quotients of radicals?
- **5.** Simplify each expression.

a.
$$\sqrt{27} \cdot \sqrt{6}$$

b.
$$\frac{\sqrt[3]{240}}{\sqrt[3]{15}}$$

c.
$$(5^{1/2} \bullet 16^{1/4})^2$$

Name _____ Date _____

Core Concepts

Properties of Rational Exponents

Let a and b be real numbers and let m and n be rational numbers, such that the quantities in each property are real numbers.

Property Name	Definition	Example
Product of Powers	$a^m \bullet a^n = a^{m+n}$	$5^{1/2} \bullet 5^{3/2} = 5^{(1/2+3/2)} = 5^2 = 25$
Power of a Power	$\left(a^{m}\right)^{n} = a^{mn}$	$5^{1/2} \bullet 5^{3/2} = 5^{(1/2+3/2)} = 5^2 = 25$ $(3^{5/2})^2 = 3^{(5/2 \bullet 2)} = 3^5 = 243$
Power of a Product	$(ab)^m = a^m b^m$	$(16 \bullet 9)^{1/2} = 16^{1/2} \bullet 9^{1/2} = 4 \bullet 3 = 12$
Negative Exponent	$a^{-m} = \frac{1}{a^m}, a \neq 0$	$36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$
Zero Exponent	$a^0 = 1, a \neq 0$	$213^0 = 1$
Quotient of Powers	$\frac{a^m}{a^n}=a^{m-n}, a\neq 0$	$\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2 - 1/2)} = 4^2 = 16$
Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$	$\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$

Notes:

Properties of Radicals

Let a and b be real numbers and let n be an integer greater than 1.

Property Name	Definition	Example
Product Property	$\sqrt[n]{a \bullet b} = \sqrt[n]{a} \bullet \sqrt[n]{b}$	$\sqrt[3]{4} \cdot \sqrt[3]{2} = \sqrt[3]{8} = 2$
Quotient Property	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$	$\frac{\sqrt[4]{162}}{\sqrt[4]{2}} = \sqrt[4]{\frac{162}{2}} = \sqrt[4]{81} = 3$

Notes:

3.2 Practice (continued)

Worked-Out Examples

Example #1

With the expression in simplest form.

$$\frac{1}{2+\sqrt{5}} = \frac{1}{2+\sqrt{5}} \cdot \frac{2-\sqrt{5}}{2-\sqrt{5}}$$

$$= \frac{1(2-\sqrt{5})}{2^2-(\sqrt{5})^2}$$

$$= \frac{2-\sqrt{5}}{4-5}$$

$$= \frac{2-\sqrt{5}}{-1}$$

$$= \sqrt{5}-2$$

Example #2

Simplify the expression.

$$5\sqrt{12} - 19\sqrt{3} = 5\sqrt{4 \cdot 3} - 19\sqrt{3}$$
$$= 5\sqrt{4}\sqrt{3} - 19\sqrt{3}$$
$$= 10\sqrt{3} - 19\sqrt{3}$$
$$= (10 - 19)\sqrt{3}$$
$$= -9\sqrt{3}$$

Practice (continued)

Practice A

In Exercises 1-4, use the properties of rational exponents to simplify the expression.

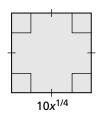
1.
$$(2^3 \bullet 3^3)^{-1/3}$$

$$2. \quad \frac{10}{10^{-4/5}}$$

3.
$$\left(\frac{52^5}{4^5}\right)^{1/6}$$

1.
$$(2^3 \bullet 3^3)^{-1/3}$$
 2. $\frac{10}{10^{-4/5}}$ **3.** $\left(\frac{52^5}{4^5}\right)^{1/6}$ **4.** $\frac{3^{1/3} \bullet 27^{2/3}}{8^{4/3}}$

5. Find simplified expressions for the perimeter and area of the given figure.



In Exercises 6–8, use the properties of radicals to simplify the expression.

6.
$$\sqrt[6]{25} \cdot \sqrt[6]{625}$$

7.
$$\frac{\sqrt{343}}{\sqrt{7}}$$

8.
$$\frac{\sqrt[3]{25} \cdot \sqrt[3]{10}}{\sqrt[3]{2}}$$

In Exercises 9-12, write the expression in simplest form.

9.
$$\sqrt[7]{384}$$

10.
$$\sqrt[3]{\frac{5}{9}}$$

11.
$$\frac{1}{4-\sqrt{5}}$$

12.
$$\frac{\sqrt{2}}{1+\sqrt{6}}$$

In Exercises 13-16, write the expression in simplest form. Assume all variables are positive.

13.
$$-2\sqrt[3]{5} + 40\sqrt[3]{5}$$

14.
$$2(1250)^{1/4} - 5(32)^{1/4}$$

15.
$$\frac{\sqrt[4]{x} \cdot \sqrt[4]{81x}}{\sqrt[4]{16x^{36}}}$$

16.
$$\frac{21(x^{-3/2})(\sqrt{y})(z^{5/2})}{7^{-1}\sqrt{x}(y^{-1/2})z}$$

Practice B

In Exercises 1-6, use the properties of rational exponents to simplify the expression.

1.
$$\frac{2^{2/5}}{2}$$

2.
$$\left(\frac{3^6}{12^6}\right)^{-1/6}$$

3.
$$\left(11^{3/2} \bullet 11^{-5/2}\right)^{-1/3}$$

4.
$$(9^{-3/5} \bullet 9^{1/5})^{-1}$$

$$\mathbf{5.} \quad \frac{3^{3/4} \bullet 27^{3/4}}{9^{3/4}}$$

6.
$$\frac{25^{5/9} \bullet 25^{7/9}}{5^{4/3}}$$

In Exercises 7–12, use the properties of radicals to simplify the expression.

7.
$$\sqrt[3]{25} \cdot \sqrt[3]{625}$$

8.
$$\sqrt[5]{6} \cdot \sqrt[5]{81}$$

9.
$$\frac{\sqrt[4]{176}}{\sqrt[4]{11}}$$

10.
$$\frac{\sqrt{7}}{\sqrt{700}}$$

11.
$$\frac{\sqrt[3]{5} \cdot \sqrt[3]{50}}{\sqrt[3]{2}}$$

12.
$$\frac{\sqrt[4]{4} \cdot \sqrt[4]{12}}{\sqrt[8]{3} \cdot \sqrt[8]{3}}$$

In Exercises 13-18, write the expression in simplest form.

13.
$$\frac{\sqrt[3]{4}}{\sqrt[3]{9}}$$

14.
$$\sqrt[3]{\frac{4}{25}}$$

15.
$$\sqrt[4]{\frac{2401}{4}}$$

16.
$$\frac{7}{5-\sqrt{3}}$$

17.
$$\frac{6}{\sqrt{2} + \sqrt{7}}$$

18.
$$\frac{\sqrt{2}}{\sqrt{15} - \sqrt{3}}$$

In Exercises 19-24, simplify the expression.

19.
$$10(25^{2/3}) - 6(25^{2/3})$$
 20. $2\sqrt{54} - 11\sqrt{6}$ **21.** $13\sqrt[3]{3} - \sqrt[3]{375}$

20.
$$2\sqrt{54} - 11\sqrt{6}$$

21.
$$13\sqrt[3]{3} - \sqrt[3]{375}$$

22.
$$\sqrt[5]{486} + 10\sqrt[5]{2}$$

23.
$$4(48^{1/4}) - 3(3^{1/4})$$

23.
$$4(48^{1/4}) - 3(3^{1/4})$$
 24. $(7^{1/3}) + 4(189^{1/3})$

25. The volume of a right circular cylinder is $V = 9\pi r^2$, where r is the radius.

- **a.** Use radicals to solve $V = 9\pi r^2$ for r. Simplify, if possible.
- **b.** Substitute the expression for r from part (a) into the formula for the surface area of a right cylinder, $S = 18\pi r + \pi r^2$.
- **c.** Use the answer to part (b) to find the surface area of a right cylinder when the volume is 108 cubic meters.