5.4

Proving Statements about Segments and Angles For use with Exploration 5.4

Essential Question How can you prove a mathematical statement?

A proof is a logical argument that uses deductive reasoning to show that a statement is true.

EXPLORATION: Writing Reasons in a Proof

Work with a partner. Four steps of a proof are shown. Write the reasons for each statement.

Given AC = AB + AB

Prove AB = BC

STATEMENTS	REASONS
1. AC = AB + AB	1. Given
2. AB + BC = AC	2
3. AB + AB = AB + BC	3
4. AB = BC	4

EXPLORATION: Writing Steps in a Proof

Work with a partner. Six steps of a proof are shown. Complete the statements that correspond to each reason.

Given $m \angle 1 = m \angle 3$

Prove $m \angle EBA = m \angle CBD$

2

5.4 Proving Statements about Segments and Angles (continued)

EXPLORATION: Writing Steps in a Proof (continued)

STATEMENTS	REASONS
1	1. Given
2. $m \angle EBA = m \angle 2 + m \angle 3$	2. Angle Addition Postulate
3. $m \angle EBA = m \angle 2 + m \angle 1$	3. Substitution Property of Equality
4. <i>m∠EBA</i> =	4. Commutative Property of Addition
5. $m \angle 1 + m \angle 2 = $	5. Angle Addition Postulate
6	6. Transitive Property of Equality

Communicate Your Answer

3. How can you prove a mathematical statement?

4. Use the given information and the figure to write a proof for the statement.

5.4 Practice For use after Lesson 5.4

Core Concepts

Reflexive, Symmetric, and Transitive Properties of Equality

	Real Numbers	Segment Lengths	Angle Measures
Reflexive Property	a = a	AB = AB	$m \angle A = m \angle A$
Symmetric Property	If $a = b$, then $b = a$.	If $AB = CD$, then $CD = AB$.	If $m \angle A = m \angle B$, then $m \angle B = m \angle A$.
Transitive Property	If $a = b$ and b = c, then a = c.	If $AB = CD$ and $CD = EF$, then $AB = EF$.	If $m \angle A = m \angle B$ and $m \angle B = m \angle C$, then $m \angle A = m \angle C$.

Notes:

Theorems

Properties of Segment Congruence

Segment congruence is reflexive, symmetric, and transitive.

Reflexive	For any segment AB , $\overline{AB} \cong \overline{AB}$.
Symmetric	If $\overline{AB} \cong \overline{CD}$, then $\overline{CD} \cong \overline{AB}$.
Transitive	If $\overline{AB} \cong \overline{CD}$ and $\overline{CD} \cong \overline{EF}$, then $\overline{AB} \cong \overline{EF}$

Properties of Angle Congruence

Angle congruence is reflexive, symmetric, and transitive.

Reflexive	For any angle A , $\angle A \cong \angle A$.
Symmetric	If $\angle A \cong \angle B$, then $\angle B \cong \angle A$.
Transitive	If $\angle A \cong \angle B$ and $\angle B \cong \angle C$, then $\angle A \cong \angle C$.

Notes:

5.4 Practice (continued)

Writing a Two-Column Proof

In a proof, you make one statement at a time until you reach the conclusion. Because you make statements based on facts, you are using deductive reasoning. Usually the first statement-and-reason pair you write is given information.

Proof of the Symmetric Property of Angle Congruence

Given $\angle 1 \cong \angle 2$ Prove $\angle 2 \cong \angle 1$

Notes:

Worked-Out Examples

Example #1

Copy and complete the proof.

Given $PQ = RS$ Prove $PR = QS$	Q R S	Given $PQ = RS$ Prove $PR = QS$	Q R S
STATEMENTS	REASONS	STATEMENTS	REASONS
1. $PQ = RS$	1	1. $PQ = RS$	1. Given
2. PQ + QR = RS + QR	2	2. PQ + QR = RS + QR	2. Addition Property of Equality
4. RS + QR = QS	 Segment Addition Postulate Segment Addition Postulate 	3. PQ + QR = PR	3. Segment Addition Postulate
5. $PR = QS$	5	4. RS + QR = QS	4. Segment Addition Postulate
		5. PR = QS	5. Transitive Property of Equality

5.4 Practice (continued)

Example #2

Write a two-column proof.

Practice A

In Exercises 1 and 2, complete the proof.

1. Given \overline{AB} and \overline{CD} bisect each other at point M and $\overline{BM} \cong \overline{CM}$. **Prove** AB = AM + DM

STATEMENTS	REASONS
1. $\overline{BM} \cong \overline{CM}$	1. Given
2. $\overline{CM} \cong \overline{DM}$	2
3. $\overline{BM} \cong \overline{DM}$	3
4. BM = DM	4
5	5. Segment Addition Postulate (Post. 1.2)
6. AB = AM + DM	6

5.4 Practice (continued)

2. Given $\angle AEB$ is a complement of $\angle BEC$. Prove $m \angle AED = 90^{\circ}$

STATEMENTS	RF	CASONS
1. $\angle AEB$ is a complement of $\angle BEC$.	1.	Given
2	2.	Definition of complementary angles
3. $m \angle AEC = m \angle AEB + m \angle BEC$	3.	
4. $m \angle AEC = 90^{\circ}$	4.	
5. $m \angle AED + m \angle AEC = 180^{\circ}$	5.	Definition of supplementary angles
6	6.	Substitution Property of Equality
7. $m \angle AED = 90^{\circ}$	7.	

In Exercises 3 and 4, name the property that the statement illustrates.

- **3.** If $\angle RST \cong \angle TSU$ and $\angle TSU \cong \angle VWX$, then $\angle RST \cong \angle VWX$.
- **4.** If $\overline{GH} \cong \overline{JK}$, then $\overline{JK} \cong \overline{GH}$.
- **5.** Write a two-column proof.

STATEMENTS	REASONS

Practice B

In Exercises 1 and 2, name the properties of equality that the statement illustrates.

- **1.** If x = y, then 2x 6 = 2y 6.
- **2.** If $m \angle A = m \angle B$ and $m \angle B = 42^\circ$, then $m \angle A + 10 = 52^\circ$.

In Exercises 3 and 4, write a two-column proof for the property.

- 3. Symmetric Property of Segment Congruence
- 4. Transitive Property of Angle Congruence

In Exercises 5–7, write a two-column proof.

5. Given *E* bisects \overline{AI} , \overline{BC} bisects \overline{AE} , and \overline{FH} bisects \overline{EI} . Prove $\overline{AD} \cong \overline{EG}$.

6. Given $m \angle KMN = 28^{\circ}$ and $m \angle PTS = 118^{\circ}$. Prove $\angle JMK \cong \angle STR$.

7. Given $\angle ADC \cong \angle BDE$. Prove $\angle ADE \cong \angle BDC$.

