7.4

Congruence and Transformations For use with Exploration 7.4

Essential Question What conjectures can you make about a figure reflected in two lines?

EXPLORATION: Reflections in Parallel Lines

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw any scalene triangle and label it $\triangle ABC$.

- **a.** Draw any line \overrightarrow{DE} . Reflect $\triangle ABC$ in \overrightarrow{DE} to form $\triangle A'B'C'$.
- **b.** Draw a line parallel to \overrightarrow{DE} . Reflect $\Delta A'B'C'$ in the new line to form $\Delta A''B''C''$.
- **c.** Draw the line through point A that is perpendicular to \overrightarrow{DE} . What do you notice?
- **d.** Find the distance between points *A* and *A*". Find the distance between the two parallel lines. What do you notice?
- **e.** Hide $\triangle A'B'C'$. Is there a single transformation that maps $\triangle ABC$ to $\triangle A''B''C''$. Explain.
- **f.** Make conjectures based on your answers in parts (c)–(e). Test your conjectures by changing $\triangle ABC$ and the parallel lines.

7.4 Congruence and Transformations (continued)

EXPLORATION: Reflections in Intersecting Lines

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to draw any scalene triangle and label it $\triangle ABC$.

- **a.** Draw any line \overrightarrow{DE} . Reflect $\triangle ABC$ in \overrightarrow{DE} to form $\triangle A'B'C'$.
- **b.** Draw any line \overrightarrow{DF} so that $\angle EDF$ is less than or equal to 90°. Reflect $\triangle A'B'C'$ in \overrightarrow{DF} to form $\triangle A''B''C''$.
- **c.** Find the measure of $\angle EDF$. Rotate $\triangle ABC$ counterclockwise about point *D* twice using the measure of $\angle EDF$.
- **d.** Make a conjecture about a figure reflected in two intersecting lines. Test your conjecture by changing $\triangle ABC$ and the lines.

Communicate Your Answer

3. What conjectures can you make about a figure reflected in two lines?

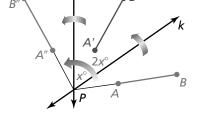
4. Point *Q* is reflected in two parallel lines, \overrightarrow{GH} and \overrightarrow{JK} , to form *Q'* and *Q''*. The distance from \overrightarrow{GH} to \overrightarrow{JK} is 3.2 inches. What is the distance QQ''?

Theorems

Reflections in Parallel Lines Theorem

If lines k and m are parallel, then a reflection in line k followed by a reflection in line m is the same as a translation.

If A'' is the image of A, then


- 1. $\overline{AA''}$ is perpendicular to k and m, and
- 2. AA'' = 2d, where d is the distance between k and m.

Notes:

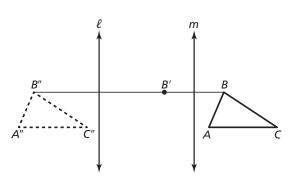
Reflections in Intersecting Lines Theorem

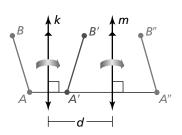
If lines k and m intersect at point P, then a reflection in line k followed by a reflection in line m is the same as a rotation about point P.

The angle of rotation is $2x^{\circ}$, where x° is the measure of the acute or right angle formed by lines *k* and *m*.

Notes:


Worked-Out Examples


Example #1

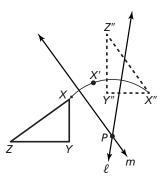

Copy the figure. Then use a compass and straightedge to construct two lines of reflection that produce a composition of reflections resulting in the same image as the given transformation.

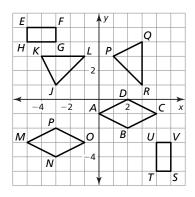
Translation: $\triangle ABC \rightarrow \triangle A''B''C''$

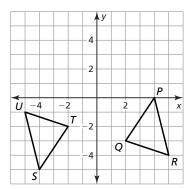
7.4 Practice (continued)

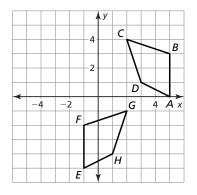
Example #2

Copy the figure. Then use a compass and straightedge to construct two lines of reflection that produce a composition of reflections reflections resulting in the same image as the given transformation.

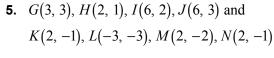

Rotation about $P: \triangle XYZ \rightarrow \triangle X''Y''Z''$ Z'' Z'' Z''' Z'''Z'''

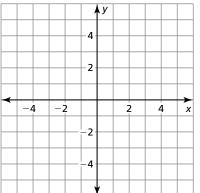

Practice A


1. Identify any congruent figures in the coordinate plane. Explain.


2. Describe a congruence transformation that maps $\triangle PQR$ to $\triangle STU$.

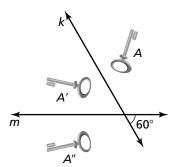
3. Describe a congruence transformation that maps polygon *ABCD* to polygon *EFGH*.

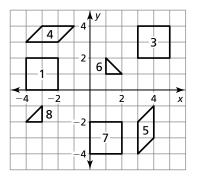




7.4 Practice (continued)

In Exercises 4 and 5, determine whether the polygons with the given vertices are congruent. Use transformations to explain your reasoning.

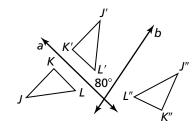

4. A(2, 2), B(3, 1), C(1, 1) and D(2, -2), E(3, -1), F(1, -1)


In Exercises 6–9, $k \parallel m$, \overline{UV} is reflected in line k, and $\overline{U'V'}$ is reflected in line m.

- **6.** A translation maps \overline{UV} onto which segment?
- 7. Which lines are perpendicular to $\overline{UU''}$?
- 8. Why is V" the image of V? Explain your reasoning.
- **9.** If the distance between k and m is 5 inches, what is the length of $\overline{VV''}$?
- **10.** What is the angle of rotation that maps A onto A''?

Practice B

1. Identify any congruent figures in the coordinate plane. Explain.



2. Determine whether the polygons with the vertices A(0, 6), B(8, 6), C(6, 2), D(2, 2) and P(-3, -4), Q(-7, -4), R(-1, -8), S(-5, -8) are congruent. Use transformations to explain your reasoning.

In Exercises 3–5, $\triangle JKL$ is reflected in line *a*, and $\triangle J'K'L'$ is reflected in line *b*.

- **3.** \overline{JK} is perpendicular to line *a* and has a length of 3 units, and vertex *K* is 1 unit from line *a*. Find the distance $\overline{JJ'}$.
- **4.** Find the angle of rotation that maps ΔJKL onto $\Delta J''K''L''$.
- **5.** Is \overline{JK} parallel to $\overline{J''K''}$? Explain your reasoning.
- The rotation (x, y) → (y, -x) maps P and P'. Find the measure of the acute or right angle formed by intersecting lines so that P can be mapped to P' using two reflections.
- **7.** Is it *always, sometimes,* or *never* true that the composition of two reflections results in the same image as a translation? Explain your reasoning.
- 8. $\triangle A$ is reflected in line *s* to form $\triangle A'$ and then reflected in line *t* to form $\triangle A''$. Draw line *t* and intermediate $\triangle A'$ to complete the figure that represents these transformations.

9. Your friend claims that if you have a series of many parallel lines, reflecting a figure in two of the lines will produce the same result as reflecting the image in four or six of the lines. Is your friend correct? Explain your reasoning.

