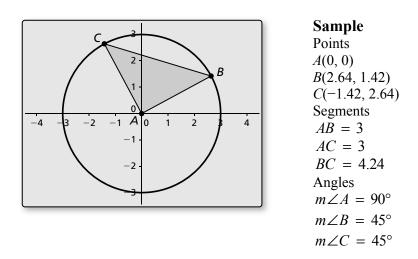

8.4

Equilateral and Isosceles Triangles For use with Exploration 8.4


Essential Question What conjectures can you make about the side lengths and angle measures of an isosceles triangle?

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Construct a circle with a radius of 3 units centered at the origin.
- **b.** Construct $\triangle ABC$ so that B and C are on the circle and A is at the origin.

- **c.** Recall that a triangle is *isosceles* if it has at least two congruent sides. Explain why $\triangle ABC$ is an isosceles triangle.
- **d.** What do you observe about the angles of $\triangle ABC$?
- e. Repeat parts (a)–(d) with several other isosceles triangles using circles of different radii. Keep track of your observations by completing the table on the next page. Then write a conjecture about the angle measures of an isosceles triangle.

5

8.4 Equilateral and Isosceles Triangles (continued)

EXPLORATION: Writing a Conjecture about Isosceles Triangles (continued)

Sam	nla
Sam	pie

	Α	В	С	AB	AC	BC	m∠A	m∠B	m∠C
1.	(0, 0)	(2.64, 1.42)	(-1.42, 2.64)	3	3	4.24	90°	45°	45°
2.	(0, 0)								
3.	(0, 0)								
4.	(0, 0)								
5.	(0, 0)								

f. Write the converse of the conjecture you wrote in part (e). Is the converse true?

Communicate Your Answer

- **2.** What conjectures can you make about the side lengths and angle measures of an isosceles triangle?
- **3.** How would you prove your conclusion in Exploration 1(e)? in Exploration 1(f)?

Name

Theorems

Base Angles Theorem

If two sides of a triangle are congruent, then the angles opposite them are congruent.

If $\overline{AB} \cong \overline{AC}$, then $\angle B \cong \angle C$.

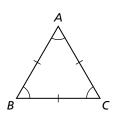
Converse of the Base Angles Theorem

If two angles of a triangle are congruent, then the sides opposite them are congruent.

If $\angle B \cong \angle C$, then $\overline{AB} \cong \overline{AC}$.

Notes:

Corollaries


Corollary to the Base Angles Theorem

If a triangle is equilateral, then it is equiangular.

Corollary to the Converse of the Base Angles Theorem

If a triangle is equiangular, then it is equilateral.

Notes:

261

Copyright © Big Ideas Learning, LLC All rights reserved.

8.4 **Practice** (continued)

Worked-Out Examples

Example #1

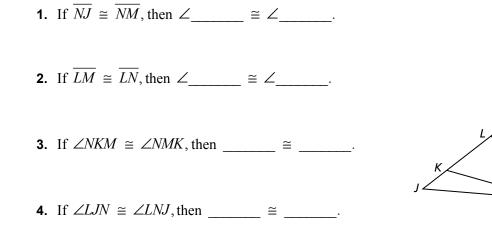
Find the value of x.

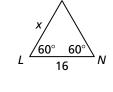
 \triangle *MLN* is an equiangular triangle and, therefore, an equilateral triangle. So, *x* = 16.

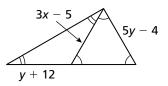
Example #2

Find the values of x and y.

By the Converse of the Base Angles Theorem:

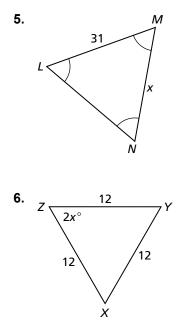

$$3x - 5 = y + 12$$
$$3x - 5 - 12 = y$$
$$y = 3x - 17$$


The triangle on the right is equiangular and, therefore, equilateral.

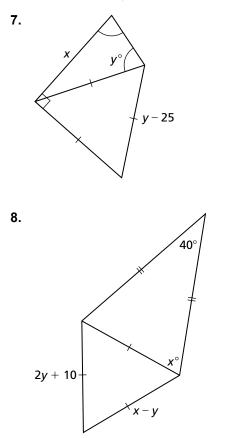

3x - 5 = 5y - 4 3x - 5 = 5(3x - 17) - 4 3x - 5 = 15x - 85 - 4 3x - 5 = 15x - 89 -12x = -84 x = 7 y = 3x - 17 $y = 3 \cdot 7 - 17$ y = 21 - 17 = 4So, x = 7 and y = 4.

Practice A

In Exercises 1–4, complete the statement. State which theorem you used.

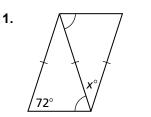


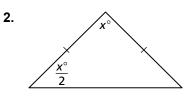
М


Date_____

8.4 **Practice** (continued)

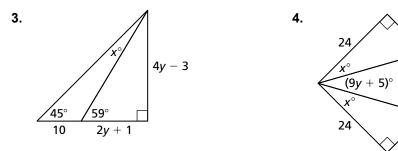
In Exercises 5 and 6, find the value of *x*.

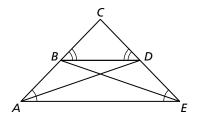



In Exercises 7 and 8, find the values of *x* and *y*.

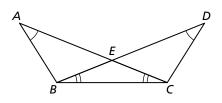
Practice B

In Exercises 1 and 2, find the value of *x*.




́Зу

5y


In Exercises 3 and 4, find the values of *x* and *y*.

5. Given $\angle CBD \cong \angle CDB$, $\angle BAE \cong \angle DEA$ Prove $\overline{AD} \cong \overline{EB}$

6. Given $\angle EBC \cong \angle ECB$, $\overline{AE} \cong \overline{DE}$ Prove $\overline{AB} \cong \overline{DC}$

