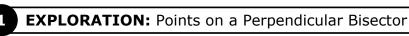
9.2

Perpendicular and Angle Bisectors For use with Exploration 9.2

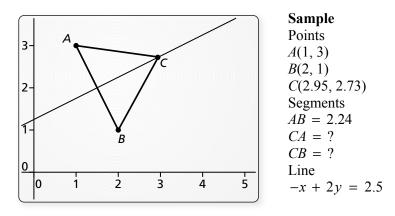
Essential Question What conjectures can you make about a point on the perpendicular bisector of a segment and a point on the bisector of an angle?



Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Draw any segment and label it \overline{AB} . Construct the perpendicular bisector of \overline{AB} .
- **b.** Label a point C that is on the perpendicular bisector of \overline{AB} but is not on \overline{AB} .
- **c.** Draw \overline{CA} and \overline{CB} and find their lengths. Then move point *C* to other locations on the perpendicular bisector and note the lengths of \overline{CA} and \overline{CB} .
- **d.** Repeat parts (a)–(c) with other segments. Describe any relationship(s) you notice.



EXPLORATION: Points on an Angle Bisector

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

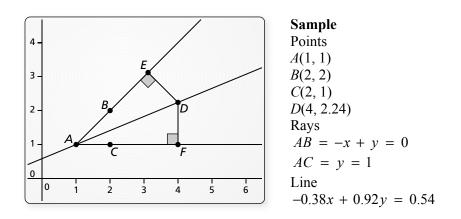
Work with a partner. Use dynamic geometry software.

- **a.** Draw two rays \overrightarrow{AB} and \overrightarrow{AC} to form $\angle BAC$. Construct the bisector of $\angle BAC$.
- **b.** Label a point D on the bisector of $\angle BAC$.

9.2 Perpendicular and Angle Bisectors (continued)

EXPLORATION: Points on an Angle Bisector (continued)

- **c.** Construct and find the lengths of the perpendicular segments from D to the sides of $\angle BAC$. Move point D along the angle bisector and note how the lengths change.
- d. Repeat parts (a)–(c) with other angles. Describe any relationship(s) you notice.



Communicate Your Answer

- **3.** What conjectures can you make about a point on the perpendicular bisector of a segment and a point on the bisector of an angle?
- 4. In Exploration 2, what is the distance from point D to \overrightarrow{AB} when the distance from D to \overrightarrow{AC} is 5 units? Justify your answer.

9.2 Practice For use after Lesson 9.2

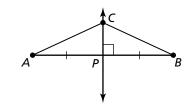
Theorems

Perpendicular Bisector Theorem

In a plane, if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If \overrightarrow{CP} is the \perp bisector of \overrightarrow{AB} , then CA = CB.

Notes:

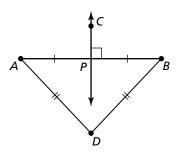


Converse of the Perpendicular Bisector Theorem

In a plane, if a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment.

If DA = DB, then point D lies on the \perp bisector of \overline{AB} .

Notes:

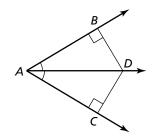


Angle Bisector Theorem

If a point lies on the bisector of an angle, then it is equidistant from the two sides of the angle.

If \overrightarrow{AD} bisects $\angle BAC$ and $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$, then DB = DC.

Notes:



Date

Practice (continued) 9.2

Converse of the Angle Bisector Theorem

If a point is in the interior of an angle and is equidistant from the two sides of the angle, then it lies on the bisector of the angle.

If $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$ and DB = DC, then \overrightarrow{AD} bisects $\angle BAC$.

Notes:

Worked-Out Examples

Example #1

Find the indicated measure. Explain your reasoning.

AB = 15; Because $\overrightarrow{DB} \perp \overrightarrow{AC}$ and point D is equidistant from A and C, point D is on the perpendicular bisector of \overline{AC} by the Converse of the Perpendicular Bisector Theorem. By definition of segment bisector, AB = BC.

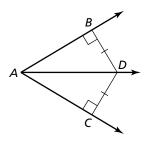
AB = BC5x = 4x + 3x = 3 $AB = 5 \cdot 3 = 15$

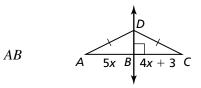
Example #2

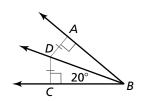
Find the indicated measure. Explain your reasoning.

Because D is equidistant from \overrightarrow{BC} and \overrightarrow{BA} , \overrightarrow{BD} bisects $\angle ABC$ by the Converse of the Angle Bisector Theorem. So, $m \angle ABD = m \angle CBD = 20^{\circ}$.

m∠ABD



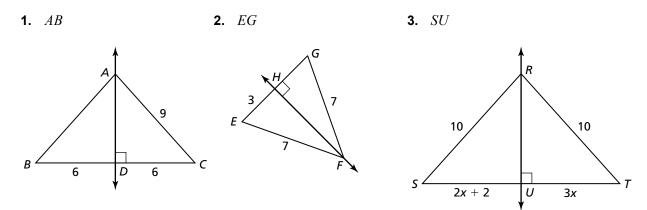




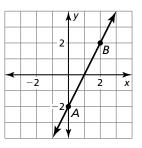
9.2 Practice (continued)

Practice A

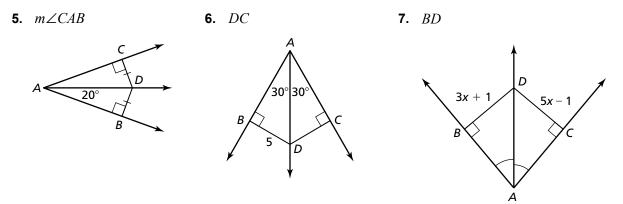
In Exercises 1–3, find the indicated measure. Explain your reasoning.



4. Find the equation of the perpendicular bisector of *AB*.

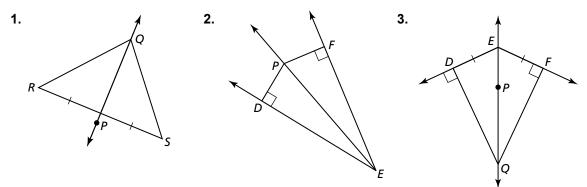


In Exercises 5–7, find the indicated measure. Explain your reasoning.

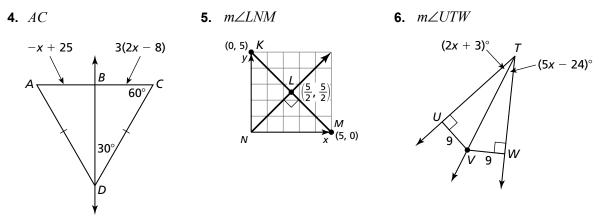


Practice B

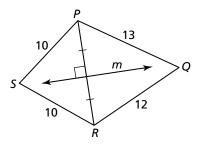
In Exercises 1–3, tell whether the information in the diagram allows you to conclude that point *P* lies on the perpendicular bisector of \overline{RS} , or on the angle bisector of $\angle DEF$. Explain your reasoning.



In Exercises 4–6, find the indicated measure. Explain your reasoning.



- 7. Write an equation of the perpendicular bisector of the segment with the endpoints G(3, 7) and H(-1, -5).
- 8. In the figure, line *m* is the perpendicular bisector of *PR*. Is point *Q* on line *m*? Is point *S* on line *m*? Explain your reasoning.



9. You are installing a fountain in the triangular garden pond shown in the figure. You want to place the fountain the same distance from each side of the pond. Describe a

of the pond. Describe a way to determine the location of the fountain using angle bisectors.

