CHAPTER 1

Absolute Value and Piecewise Functions

1.1 Absolute Value Functions 3
1.2 Solving Absolute Value Equations 9
1.3 Solving Absolute Value Inequalities 15
1.4 Piecewise Functions 21

\qquad
\qquad

Chapter Maintaining Mathematical Proficiency

Let $f(x)=2 x$. Graph f and g. Describe the transformation from the graph of f to the graph of g.

1. $g(x)=f(x)-4$
2. $g(x)=f(x+2)$
3. $g(x)=f\left(\frac{1}{2} x\right)$
4. $g(x)=3 f(x)$
5. Describe the transformation from the graph of $f(x)=x$ to the graph of $h(x)=-\frac{1}{3} x+2$.

Graph the figure and its image after a reflection in the line $\boldsymbol{y}=\boldsymbol{x}$.
6. $\overline{L M}$ with endpoints $L(2,-4)$ and $M(2,0)$
7. $\overline{S T}$ with endpoints $S(-2,5)$ and $T(-4,-1)$
8. $\triangle A B C$ with vertices $A(6,4), B(6,-1)$, and $C(-2,0)$
9. $\square E F G H$ with vertices $E(-2,-4), F(4,-4), G(4,3)$, and $H(-2,3)$
10. After a reflection in the line $y=-x$, a point originally in Quadrant I will be in which Quadrant?
\qquad

Absolute Value Functions

Essential Question How do the values of a, h, and k affect the graph of the absolute value function $g(x)=a|x-h|+k$?

1 EXPLORATION: Identifying Graphs of Absolute Value Functions

Work with a partner. Match each absolute value function with its graph. Then use a graphing calculator to verify your answers.
a. $g(x)=-|x-2|$
b. $\quad g(x)=|x-2|+2$
c. $g(x)=-|x+2|-2$
d. $g(x)=|x-2|-2$
e. $g(x)=2|x-2|$
f. $g(x)=-|x+2|+2$
A.

B.

C.

D.

E.

F.

\qquad

1.1 Absolute Value Functions (continued)

Communicate Your Answer

2. How do the values of a, h, and k affect the graph of the absolute value function $g(x)=a|x-h|+k$?
3. Write the equation of the absolute value function whose graph is shown. Use a graphing calculator to verify your equation.

\qquad
\qquad

Notes:

Core Concepts

Absolute Value Function

An absolute value function is a function that contains an absolute value expression. The parent absolute value function is $f(x)=|x|$. The graph of $f(x)=|x|$ is V -shaped and symmetric about the y-axis. The vertex is the point where the graph changes direction. The vertex of the graph of $f(x)=|x|$ is $(0,0)$.

The domain of $f(x)=|x|$ is all real numbers.
The range is $y \geq 0$.

Notes:

Vertex Form of an Absolute Value Function

An absolute value function written in the form $g(x)=a|x-h|+k$, where $a \neq 0$, is in vertex form. The vertex of the graph of g is (h, k).

Any absolute value function can be written in vertex form, and its graph is symmetric about the line $x=h$.

Notes:
\qquad

1.1 Practice (continued)

Worked-Out Examples

Example \#1

Graph the function. Compare the graph to the graph of $f(x)=|x-6|$.
$h(x)=|x-6|+2$

\boldsymbol{x}	4	5	6	7	8
$\boldsymbol{h}(\boldsymbol{x})$	4	3	2	3	4

The function h is of the form $y=f(x)+k$, where $k=2$. So, the graph of h is a vertical translation 2 units up of the graph of $f(x)=|x-6|$.

Example \#2

Graph the function. Compare the graph to the graph of $f(x)=|x-6|$.
$n(x)=\frac{1}{2}|x-6|$

\boldsymbol{x}	2	4	6	8	10
$\boldsymbol{n}(\boldsymbol{x})$	2	1	0	1	2

The function n is of the form $y=a f(x)$, where $a=\frac{1}{2}$. So, the graph of n is a vertical shrink of the graph of $f(x)=|x-6|$ by a factor of $\frac{1}{2}$.
\qquad
\qquad

1.1 Practice (continued)

Practice A

In Exercises 1-4, graph the function. Compare the graph to the graph of $f(x)=|x|$. Describe the domain and range.

1. $t(x)=\frac{1}{2}|x|$

\boldsymbol{x}	-4	-2	0	2	4
$\boldsymbol{t}(\mathbf{x})$					

3. $p(x)=|x|-3$

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{p}(\boldsymbol{x})$					

2. $u(x)=-|x|$

\boldsymbol{x}	-2	-1	0	1	2
$\boldsymbol{u}(\boldsymbol{x})$					

4. $r(x)=|x+2|$

\boldsymbol{x}	-4	-3	-2	-1	0
$\boldsymbol{r}(\boldsymbol{x})$					

\qquad

Practice B

In Exercises 1-4, graph the function. Compare the graph to the graph of $f(x)=|x|$. Describe the domain and range.

1. $m(x)=|x-3|$
2. $t(x)=4|x|$
3. $g(x)=-3|x|$
4. $z(x)=-\frac{4}{3}|x|$

In Exercises 5 and 6, graph the function. Compare the graph to the graph of $f(x)=|x-2|+4$.
5. $k(x)=|x-5|+4$
6. $q(x)=|x-2|-3$

In Exercises 7 and 8, compare the graphs. Find the value of $\boldsymbol{h}, \boldsymbol{k}$, or \boldsymbol{a}.
7.

8.

In Exercises 9 and 10, write an equation that represents the given transformation(s) of the graph of $g(x)=|x|$.
9. horizontal translation 7 units right
10. vertical shrink by a factor of $\frac{1}{3}$ and a reflection in the x-axis

In Exercises 11 and 12, graph and compare the two functions.
11. $c(x)=|x-4|+3 ; d(x)=|6 x-4|+3$
12. $p(x)=|x+1|-2 ; q(x)=\left|-\frac{2}{5} x+1\right|-2$
13. Graph $y=-\frac{3}{2}|x+3|-5$ and $y=-8$ in the same coordinate plane.

Use the graph to solve the equation $-\frac{3}{2}|x+3|-5=-8$. Check your solutions.

