# 2 Solving Absolute Value Equations For use with Exploration 1.2

**Essential Question** How can you solve an absolute value equation?

**EXPLORATION:** Solving an Absolute Value Equation Algebraically

Work with a partner. Consider the absolute value equation |x + 2| = 3.

- **a.** Describe the values of x + 2 that make the equation true. Use your description to write two linear equations that represent the solutions of the absolute value equation.
- **b.** Use the linear equations you wrote in part (a) to find the solutions of the absolute value equation.
- c. How can you use linear equations to solve an absolute value equation?

## **EXPLORATION:** Solving an Absolute Value Equation Graphically

#### Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Consider the absolute value equation |x + 2| = 3.

**a.** On a real number line, locate the point for which x + 2 = 0.

| _ | 1  |    | 1  |          | 1     | 1    | 1     | 1    |       |     |   | 1 | 1 | 1 |   |   |     |   |   |        |
|---|----|----|----|----------|-------|------|-------|------|-------|-----|---|---|---|---|---|---|-----|---|---|--------|
|   |    |    |    |          |       |      |       |      |       |     |   | 1 | 1 | 1 |   |   |     |   |   | $\neg$ |
| - | 10 | -9 | -8 | <br>/ -6 | 5 — t | o −4 | 1 - 3 | 3 -2 | 2 - 1 | ) ' | 1 | 2 | 3 | 4 | 5 | 6 | / 8 | 3 | 9 | 10     |

- **b.** Locate the points that are 3 units from the point you found in part (a). What do you notice about those points?
- c. How can you use a number line to solve an absolute value equation?

## **1.2** Solving Absolute Value Equations (continued)

## 3 **EXPLORATION:** Solving an Absolute Value Equation Numerically

#### Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Consider the absolute value equation |x + 2| = 3.

- **a.** Use a spreadsheet, as shown, to solve the absolute value equation.
- **b.** Compare the solutions you found using the spreadsheet with those you found in Explorations 1 and 2. What do you notice?



**c.** How can you use a spreadsheet to solve an absolute value equation?

## Communicate Your Answer

4. How can you solve an absolute value equation?

**5.** What do you like or dislike about the algebraic, graphical, and numerical methods for solving an absolute value equation? Give reasons for your answers.

Name



## **Core Concepts**

## **Properties of Absolute Value**

Let *a* and *b* be real numbers. Then the following properties are true.

**1.** 
$$|a| \ge 0$$
 **2.**  $|-a| = |a|$ 

**3.** 
$$|ab| = |a||b|$$
 **4.**  $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}, b \neq 0$ 

Notes:

## **Solving Absolute Value Equations**

To solve |ax + b| = c when  $c \ge 0$ , solve the related linear equations

ax + b = c or ax + b = -c.

When c < 0, the absolute value equation |ax + b| = c has no solution because absolute value always indicates a number that is not negative.

#### Notes:

### **Solving Equations with Two Absolute Values**

To solve |ax + b| = |cx + d|, solve the related linear equations

ax + b = cx + d or ax + b = -(cx + d).

Notes:

**1.2 Practice** (continued)

Date \_\_\_

# Worked-Out Examples

Example #1

Simplify the expresssion.

$$\left| -\frac{-12}{4} \right| = \left| -(-3) \right| = \left| 3 \right| = 3$$

#### Example #2

Solve the equation. Graph the solution(s), if possible.



The solutions are v = -3 and v = 6.

# **Practice A**

In Exercises 1–5, solve the equation. Graph the solution(s), if possible.

# Copyright © Big Ideas Learning, LLC All rights reserved.

1.2

Practice (continued)

Date



In Exercises 6–9, solve the equation. Check your solutions.

**6.** 
$$|20x| = |4x + 16|$$
 **7.**  $|p + 4| = |p - 2|$ 

**8.** 
$$|4q + 9| = |2q - 1|$$
 **9.**  $|2x - 7| = |2x + 9|$ 

# **Practice B**

In Exercises 1–10, solve the equation. Graph the solution(s), if possible.

- 1. |p 3| = 10 2. |-2k| = 6 

   3. |6f| = -2 4.  $\left|\frac{q}{5}\right| = 3$  

   5. |-a + 2| + 9 = 6 6. 3|4 3m| = 30 

   7. -4|5g 12| = -12 8. |x 3| + 9 = 30 

   9. 3|2d 6| + 2 = 2 10. 7|2c 6| + 4 = 32
- **11.** A company manufactures penny number 2 nails that are 1 inch in length. The actual length is allowed to vary by up to  $\frac{1}{32}$  inch.
  - **a.** Write and solve an absolute value equation to find the minimum and maximum acceptable nail length.
  - **b.** A penny number 2 nail is 1.05 inches long. Is the nail acceptable? Explain.

#### In Exercises 12–14, write an absolute value equation that has the given solutions.

| 12. | 3 and 9 | <b>13.</b> -5 and 15 | <b>14.</b> 4 and 11 |
|-----|---------|----------------------|---------------------|
|     |         |                      |                     |

#### In Exercises 15–20, solve the equation. Check your solutions.

| 15. | 9w-4  =  2w+10                        | 16. | 2 n+7  =  4n+8                          |
|-----|---------------------------------------|-----|-----------------------------------------|
| 17. | 3 3t + 1  = 2 6t + 3                  | 18. | 5r+3  = 2r                              |
| 19. | $\left j-5\right  = \left j+9\right $ | 20. | $\left 2k+4\right  = \left 2k+3\right $ |

- **21.** You conduct a random survey of your small town about having a community garage sale. Of those surveyed, 56% are in favor and 44% are opposed. The actual percent could be 5% more or 5% less than the acquired results.
  - **a.** Write and solve an absolute value equation to find the least and greatest percents of your town population that could be opposed to a community garage sale.
  - **b.** A friend claims that half the town is actually opposed to a community garage sale. Does this statement conflict with the survey data? Explain.