Dividing Polynomials For use with Exploration 2.2

Essential Question How can you use the factors of a cubic polynomial to solve a division problem involving the polynomial?

1 **EXPLORATION:** Dividing Polynomials

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Match each division statement with the graph of the related cubic polynomial f(x). Explain your reasoning. Use a graphing calculator to verify your answers.

a.
$$\frac{f(x)}{x} = (x-1)(x+2)$$

b.
$$\frac{f(x)}{x-1} = (x-1)(x+2)$$

c.
$$\frac{f(x)}{x+1} = (x-1)(x+2)$$

d.
$$\frac{f(x)}{x-2} = (x-1)(x+2)$$

e.
$$\frac{f(x)}{x+2} = (x-1)(x+2)$$

f.
$$\frac{f(x)}{x-3} = (x-1)(x+2)$$

A.

В.

C.

D.

E.

F.

2.2 Dividing Polynomials (continued)

2 **EXPLORATION:** Dividing Polynomials

Work with a partner. Use the results of Exploration 1 to find each quotient. Write your answers in standard form. Check your answers by multiplying.

a.
$$(x^3 + x^2 - 2x) \div x$$

b.
$$(x^3 - 3x + 2) \div (x - 1)$$

c.
$$(x^3 + 2x^2 - x - 2) \div (x + 1)$$

d.
$$(x^3 - x^2 - 4x + 4) \div (x - 2)$$

e.
$$(x^3 + 3x^2 - 4) \div (x + 2)$$

f.
$$(x^3 - 2x^2 - 5x + 6) \div (x - 3)$$

Communicate Your Answer

3. How can you use the factors of a cubic polynomial to solve a division problem involving the polynomial?

Core Concepts

The Remainder Theorem

If a polynomial f(x) is divided by x - k, then the remainder is r = f(k).

Notes:

Worked-Out Examples

Example #1

Divide using polynomial long division.

$$(3x^2 - 14x - 5) \div (x - 5)$$

$$\begin{array}{r}
 3x + 1 \\
 x - 5 \overline{\smash)3x^2 - 14x - 5} \\
 \underline{3x^2 - 15x} \\
 x - 5 \\
 \underline{x - 5} \\
 0
 \end{array}$$

$$(3x^2 - 14x - 5) \div (x - 5) = 3x + 1$$

Example #2

Divide using synthetic division.

$$(x^3 - 4x + 6) \div (x + 3)$$

Use synthetic division. Because the divisor is x + 3 = x - (-3), k = -3.

$$\frac{x^3 - 4x + 6}{x + 3} = x^2 - 3x + 5 - \frac{9}{x + 3}$$

Practice (continued)

Practice A

In Exercises 1-4, divide using polynomial long division.

1.
$$(x^2 + 6x + 12) \div (x - 3)$$

2.
$$(x^3 - 4x^2) \div (x^2 - 16)$$

3.
$$(4x^3 + 13x^2 + 27x + 6) \div (4x + 1)$$

3.
$$(4x^3 + 13x^2 + 27x + 6) \div (4x + 1)$$
 4. $(x^4 + 2x^3 + 5x^2 + 3x) \div (x^2 - x)$

In Exercises 5–8, divide using synthetic division.

5.
$$(x^2 - 10x + 2) \div (x - 2)$$

6.
$$(x^3 + 4x^2 + 6x + 4) \div (x + 2)$$

7.
$$(2x^3 - 54) \div (x + 3)$$

8.
$$(2x^4 - 11x^3 + 11x^2 + 4x + 4) \div (x - 4)$$

Practice (continued)

In Exercises 9-12, match the equivalent expressions. Justify your answers.

9.
$$(x^2 - x - 8) \div (x - 4)$$

A.
$$x + 3 + \frac{4}{x - 4}$$

10.
$$(x^2 - x + 8) \div (x - 4)$$

B.
$$x + 5 + \frac{12}{x - 4}$$

11.
$$(x^2 + x - 8) \div (x - 4)$$

c.
$$x + 5 + \frac{28}{x - 4}$$

12.
$$(x^2 + x + 8) \div (x - 4)$$

D.
$$x + 3 + \frac{20}{x - 4}$$

In Exercises 13-16, use synthetic division to evaluate the function for the indicated value of x.

13.
$$f(x) = -3x^3 + 4x^2 - 17x - 6$$
; $x = 2$ **14.** $f(x) = -x^4 + x^2 + 4$; $x = -1$

14.
$$f(x) = -x^4 + x^2 + 4$$
; $x = -1$

15.
$$f(x) = x^3 - 10x^2 + 31x - 30; x = -5$$
 16. $f(x) = x^3 + 8x + 27; x = 3$

16.
$$f(x) = x^3 + 8x + 27; x = 3$$

17. What is the value of k such that $\left(-x^4 + 5x^2 + kx - 8\right) \div (x - 4)$ has a remainder of 0?

Practice B

In Exercises 1-3, divide using polynomial long division.

1.
$$(x^3 + 3x^2 - 4x - 6) \div (x^2 - 4)$$

2.
$$(4x^4 + 2x^3 - 9x^2 - 36) \div (x^2 + x - 4)$$

3.
$$(2x^4 - 40x^2 - 28) \div (x^2 - 5x - 2)$$

In Exercises 4-9, divide using synthetic division.

4.
$$(4x^2 - 15x + 7) \div (x - 2)$$

5.
$$(x^3 - 9x + 12) \div (x + 3)$$

6.
$$(x^2 + 16) \div (x - 4)$$

7.
$$(2x^3 - 5x^2 + 3) \div (x + 1)$$

8.
$$(x^4 + 5x^3 - 6x^2 - 11x + 14) \div (x + 4)$$

9.
$$(x^4 + 2x^3 + 4x - 20) \div (x + 6)$$

10. Describe and correct the error in using synthetic division to divide $x^3 + 2x^2 + 7$ by x + 3.

$$\frac{x^3 + 2x^2 + 7}{x + 3} = x^3 - x^2 + 3x - 2$$

In Exercises 11–14, use synthetic division to evaluate the function for the indicated value of x.

11.
$$f(x) = x^3 + x^2 - 4x + 3$$
; $x = -1$

12.
$$f(x) = -x^3 - 6x^2 + 6$$
; $x = -2$

13.
$$f(x) = x^4 + 5x^2 - 8x + 1$$
; $x = 4$

14.
$$f(x) = -x^4 - x^2 - 5$$
; $x = 3$

15. What is the value of k such that $(x^3 + kx^2 - 9x - 36) \div (x + 4)$ has a remainder of zero?