Factoring Polynomials For use with Exploration 2.3

Essential Question How can you factor a polynomial?

EXPLORATION: Factoring Polynomials

Work with a partner. Match each polynomial equation with the graph of its related polynomial function. Use the x-intercepts of the graph to write each polynomial in factored form. Explain your reasoning.

a.
$$x^2 + 5x + 4 = 0$$

b.
$$x^3 - 2x^2 - x + 2 = 0$$

c.
$$x^3 + x^2 - 2x = 0$$

d.
$$x^3 - x = 0$$

e.
$$x^4 - 5x^2 + 4 = 0$$

f.
$$x^4 - 2x^3 - x^2 + 2x = 0$$

A.

В.

C.

D.

E.

2.3 Factoring Polynomials (continued)

2 **EXPLORATION:** Factoring Polynomials

Work with a partner. Use the *x*-intercepts of the graph of the polynomial function to write each polynomial in factored form. Explain your reasoning. Check your answers by multiplying.

a.
$$f(x) = x^2 - x - 2$$

b.
$$f(x) = x^3 - x^2 - 2x$$

c.
$$f(x) = x^3 - 2x^2 - 3x$$

d.
$$f(x) = x^3 - 3x^2 - x + 3$$

e.
$$f(x) = x^4 + 2x^3 - x^2 - 2x$$

f.
$$f(x) = x^4 - 10x^2 + 9$$

Communicate Your Answer

3. How can you factor a polynomial?

4. What information can you obtain about the graph of a polynomial function written in factored form?

2.3

Practice

For use after Lesson 2.3

Core Concepts

Special Factoring Patterns

Sum of Two Cubes

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

Example

$$64x^3 + 1 = (4x)^3 + 1^3$$
$$= (4x + 1)(16x^2 - 4x + 1)$$

Difference of Two Cubes

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Example

$$27x^{3} - 8 = (3x)^{3} - 2^{3}$$
$$= (3x - 2)(9x^{2} + 6x + 4)$$

Notes:

The Factor Theorem

A polynomial f(x) has a factor x - k if and only if f(k) = 0.

Notes:

2.3 Practice (continued)

Worked-Out Examples

Example #1

Factor the polynomial completely.

$$x^{3} - 2x^{2} - 24x = x(x^{2} - 2x - 24)$$
$$= x(x - 6)(x + 4)$$

Example #2

Factor the polynomial completely.

$$3r^8 + 3r^5 - 60r^2 = 3r^2(r^6 + r^3 - 20)$$

= $3r^2(r^3 + 5)(r^3 - 4)$

Practice A

In Exercises 1–14, factor the polynomial completely.

1.
$$20x^3 - 220x^2 + 600x$$

2.
$$m^5 - 81m$$

3.
$$27a^3 + 8b^3$$

4.
$$5t^6 + 2t^5 - 5t^4 - 2t^3$$

5.
$$y^4 - 13y^2 - 48$$

6.
$$5p^3 + 5p - 5p^2 - 5$$

7.
$$810k^4 - 160$$

8.
$$a^5 + a^3 - a^2 - 1$$

2.3 Practice (continued)

9.
$$2x^6 - 8x^5 - 42x^4$$

10.
$$5z^3 + 5z^2 - 6z - 6$$

11.
$$12x^2 - 22x - 20$$

12.
$$3m^2 - 48m^6$$

13.
$$4x^3 - 4x^2 + x$$

14.
$$5m^4 - 70m^3 + 245m^2$$

In Exercises 15–17, show that the binomial is a factor of f(x). Then factor f(x) completely.

15.
$$f(x) = x^3 - 13x - 12; x + 1$$

16.
$$f(x) = 6x^3 + 8x^2 - 34x - 12; x - 2$$

17.
$$f(x) = 2x^4 - 12x^3 + 6x^2 + 20x$$
; $x - 5$

Practice B

In Exercises 1–6, factor the polynomial completely.

1.
$$5t^5 - 320t^3$$

1.
$$5t^5 - 320t^3$$
 2. $2p^6 - 26p^5 + 84p^4$ **3.** $3x^4 - 432x^2$

3.
$$3x^4 - 432x^2$$

4.
$$5a^6 - 16a^5 - 45a^4$$

5.
$$12j^9 - 28j^8 + 15j^7$$

4.
$$5a^6 - 16a^5 - 45a^4$$
 5. $12j^9 - 28j^8 + 15j^7$ **6.** $15q^{10} + 38q^9 + 24q^8$

In Exercises 7–9, factor the polynomial completely.

7.
$$2p^9 - 16p^6$$

8.
$$25k^8 + 1600k^5$$

9.
$$54w^7 - 16w^4$$

In Exercises 10–13, factor the polynomial completely.

10.
$$x^3 - 7x^2 + 5x - 35$$

11.
$$m^3 - 2m^2 - 16m + 32$$

12.
$$9w^3 - 27w^2 - 4w + 12$$

13.
$$25s^3 + 100s^2 - s - 4$$

In Exercises 14-16, factor the polynomial completely.

14.
$$81g^4 - 625$$

15.
$$2t^8 + 6t^5 - 20t^2$$

15.
$$2t^8 + 6t^5 - 20t^2$$
 16. $5v^{10} - 25v^6 + 30v^2$

In Exercises 17–20, determine whether the binomial is a factor of f(x).

17.
$$f(x) = 4x^3 - 15x^2 - 30x + 25$$
; $x - 5$ **18.** $f(x) = 2x^3 + 16x^2 - 4x - 50$; $x + 7$

18.
$$f(x) = 2x^3 + 16x^2 - 4x - 50$$
; $x + 7$

19.
$$f(x) = 8x^5 + 43x^4 - 58x^3 + 60x^2 - 70$$
; $x - 4$

20.
$$f(x) = 42x^4 + 143x^3 + 37x^2 - 27x + 45$$
; $x - 2$

21. Fill in the blank of the divisor so that the remainder is 0. Justify your answer.

$$f(x) = 2x^3 + 7x^2 - 4x; (x +)$$

22. The standard equation of a circle with radius r and center (h, k) is $(x - h)^2 + (y - k)^2 = r^2$. Rewrite the equation of each circle in

standard form. Identify the center and radius of the circle. Then graph the circle.

a.
$$x^2 + 8x + 16 + y^2 = 9$$

b.
$$x^2 - 10x + 25 + y^2 = 4$$

c.
$$x^2 - 4x + 4 + y^2 + 6y + 9 = 16$$