\qquad

Essential Question How can you determine whether a polynomial

 equation has imaginary solutions?
1 EXPLORATION: Cubic Equations and Imaginary Solutions

Work with a partner. Match each cubic polynomial equation with the graph of its related polynomial function. Then find all solutions. Make a conjecture about how you can use a graph or table of values to determine the number and types of solutions of a cubic polynomial equation.
a. $x^{3}-3 x^{2}+x+5=0$
b. $x^{3}-2 x^{2}-x+2=0$
c. $x^{3}-x^{2}-4 x+4=0$
d. $x^{3}+5 x^{2}+8 x+6=0$
e. $x^{3}-3 x^{2}+x-3=0$
f. $x^{3}-3 x^{2}+2 x=0$
A.

B.

C.

D.

E.

F.

\qquad

2.5 The Fundamental Theorem of Algebra (continued)

2 EXPLORATION: Quartic Equations and Imaginary Solutions
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use the graph of the related quartic function, or a table of values, to determine whether each quartic equation has imaginary solutions. Explain your reasoning. Then find all solutions.
a. $x^{4}-2 x^{3}-x^{2}+2 x=0$
b. $x^{4}-1=0$
c. $x^{4}+x^{3}-x-1=0$
d. $x^{4}-3 x^{3}+x^{2}+3 x-2=0$

Communicate Your Answer

3. How can you determine whether a polynomial equation has imaginary solutions?
4. Is it possible for a cubic equation to have three imaginary solutions? Explain your reasoning.
\qquad
2.5

Practice

 For use after Lesson 2.5
Core Concepts

The Fundamental Theorem of Algebra

Theorem If $f(x)$ is a polynomial of degree n where $n>0$, then the equation $f(x)=0$ has at least one solution in the set of complex numbers.

Corollary If $f(x)$ is a polynomial of degree n where $n>0$, then the equation $f(x)=0$ has exactly n solutions provided each solution repeated twice is counted as two solutions, each solution repeated three times is counted as three solutions, and so on.

Notes:

The Complex Conjugates Theorem

If f is a polynomial function with real coefficients, and $a+b i$ is an imaginary zero of f, then $a-b i$ is also a zero of f.

Notes:

\qquad

2.5 Practice (continued)

Descartes's Rule of Signs

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ be a polynomial function with real coefficients.

- The number of positive real zeros of f is equal to the number of changes in sign of the coefficients of $f(x)$ or is less than this by an even number.
- The number of negative real zeros of f is equal to the number of changes in sign of the coefficients of $f(-x)$ or is less than this by an even number.

Notes:

Worked-Out Examples

Example \#1

Identify the number of solutions of the polynomial equation. Then find all solutions of the equation.

$$
z^{4}+5 z^{2}-14=0
$$

Because $z^{4}+5 z^{2}-14=0$ is a polynomial equation of degree 4 , it has four solutions. Solve by factoring.

$$
\begin{array}{rlrlrl}
z^{4}+5 z^{2}-14 & =0 & & \\
\left(z^{2}-2\right)\left(z^{2}+7\right) & =0 & & \\
z^{2}-2 & =0 & \text { or } & z^{2}+7 & =0 \\
z^{2} & =2 & \text { or } & z^{2} & =-7 \\
z & = \pm \sqrt{2} & \text { or } & & z & = \pm \sqrt{-7} \\
& & z & = \pm i \sqrt{7}
\end{array}
$$

The solutions are $-\sqrt{2}, \sqrt{2},-i \sqrt{7}$, and $i \sqrt{7}$.

Example \#2

Find all zeros of the polynomial function.
$f(x)=x^{4}+5 x^{3}-7 x^{2}-29 x+30$

Find the rational zeros of f. Because f is a polynomial function of degree 4, it has four zeros. The possible rational zeros are $\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15$, and ± 30. Using synthetic division, you can determine that $-5,-3,1$, and 2 are zeros.
\qquad

2.5 Practice (continued)

Practice A

In Exercises 1-4, find all zeros of the polynomial function.

1. $h(x)=x^{4}-3 x^{3}+6 x^{2}+2 x-60$
2. $f(x)=x^{3}-3 x^{2}-15 x+125$
3. $g(x)=x^{4}-48 x^{2}-49$
4. $h(x)=-5 x^{3}+9 x^{2}-18 x-4$

In Exercises 5-8, write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 , and the given zeros.
5. $-4,1,7$
6. $10,-\sqrt{5}$
7. $8,3-i$
8. $0,2-\sqrt{2}, 2+3 i$
\qquad
\qquad

Practice B

In Exercises 1-4, identify the number of solutions of the polynomial equation.
Then find all solutions of the equation.

1. $8 x^{3}+27=0$
2. $4 p^{5}-32 p^{2}=0$
3. $t^{8}-t^{4}-t^{2}+1=0$
4. $x^{5}-9 x^{3}+8 x^{2}-72=0$

In Exercises 5-8, find all zeros of the polynomial function.
5. $h(x)=x^{4}-4 x^{3}+3 x^{2}+4 x-4$
6. $f(x)=x^{4}-12 x^{3}+54 x^{2}-108 x+81$
7. $g(x)=x^{5}+4 x^{4}+x^{3}-14 x^{2}-20 x-8$
8. $f(x)=x^{5}+2 x^{4}-13 x^{3}-26 x^{2}+36 x+72$

In Exercises 9 and 10, determine the number of imaginary zeros for the function with the given degree and graph. Explain your reasoning.
9. Degree: 4

10. Degree: 3

In Exercises 11-13, write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1 , and the given zeros.
11. $2,3+i$
12. $2 i, 1-i$
13. $3,-\sqrt{7}$
14. Two zeros of $f(x)=x^{3}-2 x^{2}+9 x-18$ are $3 i$ and $-3 i$. Explain why the third zero must be a real number.
15. Use Descartes' Rule of Signs to determine which function has no positive real zeros.
A. $f(x)=x^{4}-3 x^{2}+6 x-7$
B. $f(x)=x^{4}+2 x^{2}+4 x-3$
C. $f(x)=x^{4}+x^{2}+10$
D. $f(x)=x^{4}+5 x^{3}-9 x-7$

