1

2.5

The Fundamental Theorem of Algebra For use with Exploration 2.5

Essential Question How can you determine whether a polynomial equation has imaginary solutions?

EXPLORATION: Cubic Equations and Imaginary Solutions

Work with a partner. Match each cubic polynomial equation with the graph of its related polynomial function. Then find *all* solutions. Make a conjecture about how you can use a graph or table of values to determine the number and types of solutions of a cubic polynomial equation.

a.
$$x^{3} - 3x^{2} + x + 5 = 0$$

b. $x^{3} - 2x^{2} - x + 2 = 0$
c. $x^{3} - x^{2} - 4x + 4 = 0$
d. $x^{3} + 5x^{2} + 8x + 6 = 0$
e. $x^{3} - 3x^{2} + x - 3 = 0$
f. $x^{3} - 3x^{2} + 2x = 0$

2

2.5 The Fundamental Theorem of Algebra (continued)

EXPLORATION: Quartic Equations and Imaginary Solutions

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use the graph of the related quartic function, or a table of values, to determine whether each quartic equation has imaginary solutions. Explain your reasoning. Then find *all* solutions.

a.
$$x^4 - 2x^3 - x^2 + 2x = 0$$
 b. $x^4 - 1 = 0$

c. $x^4 + x^3 - x - 1 = 0$ **d.** $x^4 - 3x^3 + x^2 + 3x - 2 = 0$

Communicate Your Answer

- 3. How can you determine whether a polynomial equation has imaginary solutions?
- **4.** Is it possible for a cubic equation to have three imaginary solutions? Explain your reasoning.

Name

Core Concepts

The Fundamental Theorem of Algebra

Theorem	If $f(x)$ is a polynomial of degree <i>n</i> where $n > 0$, then the equation $f(x) = 0$ has at least one solution in the set of complex numbers.
Corollary	If $f(x)$ is a polynomial of degree <i>n</i> where $n > 0$, then the equation $f(x) = 0$ has exactly <i>n</i> solutions provided each solution repeated twice is counted as two solutions, each solution repeated three times is counted as three solutions, and so on.

Notes:

The Complex Conjugates Theorem

If f is a polynomial function with real coefficients, and a + bi is an imaginary zero of f, then a - bi is also a zero of f.

Notes:

2.5 Practice (continued)

Descartes's Rule of Signs

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ be a polynomial function with real coefficients.

- The number of *positive real zeros* of f is equal to the number of changes in sign of the coefficients of f(x) or is less than this by an even number.
- The number of *negative real zeros* of f is equal to the number of changes in sign of the coefficients of f(-x) or is less than this by an even number.

Notes:

Worked-Out Examples

Example #1

Identify the number of solutions of the polynomial equation. Then find all solutions of the equation.

 $z^4 + 5z^2 - 14 = 0$

Because $z^4 + 5z^2 - 14 = 0$ is a polynomial equation of degree 4, it has four solutions. Solve by factoring.

$$z^{4} + 5z^{2} - 14 = 0$$

(z² - 2)(z² + 7) = 0
z² - 2 = 0 or z² + 7 = 0
z² = 2 or z² = -7
z = \pm \sqrt{2} or z = \pm \sqrt{-7}
z = \pm i\sqrt{7}

The solutions are $-\sqrt{2}$, $\sqrt{2}$, $-i\sqrt{7}$, and $i\sqrt{7}$.

Example #2

Find all zeros of the polynomial function.

$$f(x) = x^4 + 5x^3 - 7x^2 - 29x + 30$$

Find the rational zeros of *f*. Because *f* is a polynomial function of degree 4, it has four zeros. The possible rational zeros are ± 1 , ± 2 , ± 3 , ± 5 , ± 6 , ± 10 , ± 15 , and ± 30 . Using synthetic division, you can determine that -5, -3, 1, and 2 are zeros.

Name

2.5 Practice (continued)

Practice A

In Exercises 1–4, find all zeros of the polynomial function.

1. $h(x) = x^4 - 3x^3 + 6x^2 + 2x - 60$ **2.** $f(x) = x^3 - 3x^2 - 15x + 125$

3.
$$g(x) = x^4 - 48x^2 - 49$$

4. $h(x) = -5x^3 + 9x^2 - 18x - 4$

In Exercises 5–8, write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros.

5.
$$-4, 1, 7$$
 6. $10, -\sqrt{5}$

7. 8, 3 - *i* **8.** 0, 2 - $\sqrt{2}$, 2 + 3*i*

Practice B

In Exercises 1–4, identify the number of solutions of the polynomial equation. Then find all solutions of the equation.

1. $8x^3 + 27 = 0$ **2.** $4p^5 - 32p^2 = 0$ **3.** $t^8 - t^4 - t^2 + 1 = 0$ **4.** $x^5 - 9x^3 + 8x^2 - 72 = 0$

In Exercises 5–8, find all zeros of the polynomial function.

5. $h(x) = x^4 - 4x^3 + 3x^2 + 4x - 4$ 6. $f(x) = x^4 - 12x^3 + 54x^2 - 108x + 81$ 7. $g(x) = x^5 + 4x^4 + x^3 - 14x^2 - 20x - 8$ 8. $f(x) = x^5 + 2x^4 - 13x^3 - 26x^2 + 36x + 72$

In Exercises 9 and 10, determine the number of imaginary zeros for the function with the given degree and graph. Explain your reasoning.

9. Degree: 4

10. Degree: 3

In Exercises 11–13, write a polynomial function *f* of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros.

- **11.** 2, 3 + *i* **12.** 2*i*, 1 *i* **13.** 3, $-\sqrt{7}$
- **14.** Two zeros of $f(x) = x^3 2x^2 + 9x 18$ are 3i and -3i. Explain why the third zero must be a real number.
- **15.** Use Descartes' Rule of Signs to determine which function has no positive real zeros.
 - **A.** $f(x) = x^4 3x^2 + 6x 7$ **B.** $f(x) = x^4 + 2x^2 + 4x - 3$
 - **C.** $f(x) = x^4 + x^2 + 10$ **D.** $f(x) = x^4 + 5x^3 - 9x - 7$