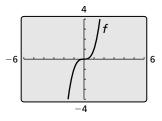
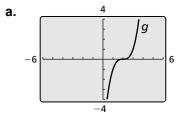
1

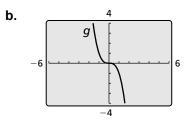
2.6

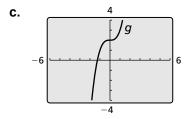
Transformations of Polynomial Functions For use with Exploration 2.6

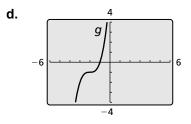
Essential Question How can you transform the graph of a polynomial function?


EXPLORATION: Transforming the Graph of a Cubic Function


Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

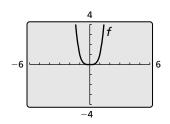

Work with a partner. The graph of the cubic function

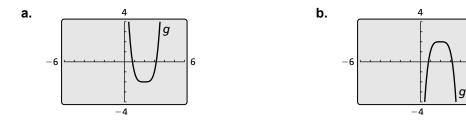

$$f(x) = x^3$$


is shown. The graph of each cubic function g represents a transformation of the graph of f. Write a rule for g. Use a graphing calculator to verify your answers.

2

2.6 Transformations of Polynomial Functions (continued)

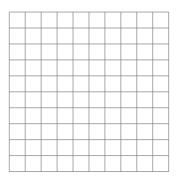

EXPLORATION: Transforming the Graph of a Quartic Function


Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. The graph of the quartic function

$$f(x) = x^4$$

is shown. The graph of each quartic function g represents a transformation of the graph of f. Write a rule for g. Use a graphing calculator to verify your answers.



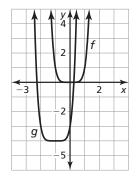
Communicate Your Answer

3. How can you transform the graph of a polynomial function?

4. Describe the transformation of $f(x) = x^4$ represented by $g(x) = (x + 1)^4 + 3$. Then graph g.

Core Concepts

Transformation	f(x) Notation	Examples				
Horizontal Translation	f(x-h)	$g(x) = (x - 5)^4$ 5 units right				
Graph shifts left or right.	$\int (x - n)$	$g(x) = (x + 2)^4$ 2 units left				
Vertical Translation Graph shifts up or down.	f(x) + k	$g(x) = x^4 + 1$ 1 unit up $g(x) = x^4 - 4$ 4 units down				
Reflection Graph flips over <i>x</i> - or <i>y</i> -axis.	$f(-x) \\ -f(x)$	$g(x) = (-x)^4 = x^4$ over y-axis $g(x) = -x^4$ over x-axis				
Horizontal Stretch or Shrink Graph stretches away from or shrinks toward <i>y</i> -axis	f(ax)	$g(x) = (2x)^{4}$ shrink by a factor of $g(x) = \left(\frac{1}{2}x\right)^{4}$ stretch by a factor of	2			
Vertical Stretch or Shrink Graph stretches away from or shrinks toward <i>x</i> -axis.	$a \bullet f(x)$	$g(x) = 8x^4$ stretch by a factor of $g(x) = \frac{1}{4}x^4$ shrink by a factor of				

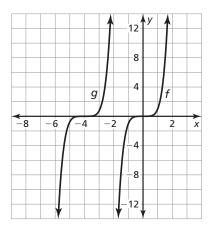

Notes:

Worked-Out Examples

Example #1

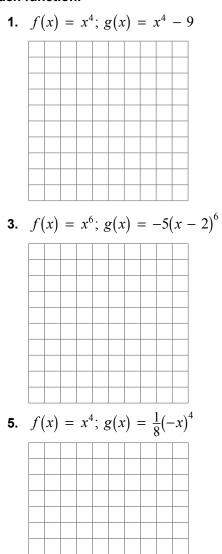
Describe the transformation of f represented by g. Then graph each function.

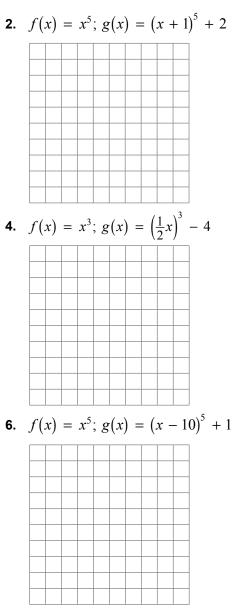
Notice that the function is of the form $g(x) = (x - h)^6 + k$. Rewrite the function to identify *h* and *k*, $g(x) = (x - (-1))^6 + (-4)$. Because h = -1 and k = -4, the graph of *g* is a translation 1 unit left and 4 units down of the graph of *f*.


Date

2.6 Practice (continued)

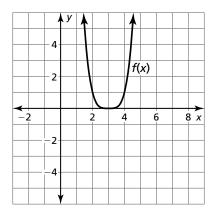
Example #2


Describe the transformation of f represented by g. Then graph each function

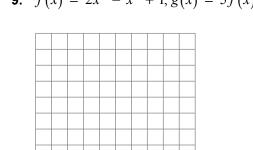

Notice that the function is of the form $g(x) = a(x - h)^5$, where $a = \frac{3}{4}$ and h = -4. So, the graph of g is a vertical shrink by factor of $\frac{3}{4}$ followed by a translation 4 units left of the graph of f.

Practice A

In Exercises 1–6, describe the transformation of f represented by g. Then graph each function.



Copyright © Big Ideas Learning, LLC All rights reserved.


2.6 Practice (continued)

7. Graph the function g(x) = -f(x-3) on the same coordinate plane as f(x).

In Exercises 8 and 9, write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f.

8. $f(x) = x^3 + 8$; g(x) = f(-x) - 9**9.** $f(x) = 2x^5 - x^3 + 1$; g(x) = 5f(x)

In Exercises 10 and 11, write a rule for *g* that represents the indicated transformations of the graph of *f*.

- **10.** $f(x) = x^3 6x^2 + 5$; translation 1 unit left, followed by a reflection in the *x*-axis and a vertical stretch by a factor of 2
- **11.** $f(x) = 3x^4 + x^3 + 3x^2 + 12$; horizontal shrink by a factor of $\frac{1}{3}$ and a translation 8 units down, followed by a reflection in the *y*-axis

Name

Practice B

In Exercises 1 and 2, describe the transformation of *f* represented by *g*. Then graph each function.

1. $f(x) = x^4$, $g(x) = (x - 3)^4 - 2$ **2.** $f(x) = x^5$, $g(x) = (x - 1)^5 + 4$

In Exercises 3–6, describe the transformation of f represented by g. Then graph each function.

3. $f(x) = x^5$, $g(x) = -3x^5$ **4.** $f(x) = x^4$, $g(x) = 3x^4 + 2$ **5.** $f(x) = x^4$, $g(x) = \frac{1}{3}x^4 - 3$ **6.** $f(x) = x^4$, $g(x) = \frac{2}{3}(x+3)^4$

In Exercises 7 and 8, write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f.

- 7. $f(x) = x^3 4x^2 + 2$, $g(x) = -\frac{1}{4}f(x)$ 8. $f(x) = x^4 + x + 1$, g(x) = f(-x) + 2
- **9.** Describe and correct the error in describing the transformation of the graph of $f(x) = x^4$ represented by the graph of $g(x) = 4x^4 + 3$.

The graph of g is a vertical shrink by a factor of $\frac{1}{4}$, followed by a translation 3 units up of the graph of f.

In Exercises 10 and 11, write a rule for *g* that represents the indicated transformations of the graph of *f*.

- **10.** $f(x) = x^3 3x^2 + 2$; horizontal stretch by a factor of 3 and a translation 3 units up, followed by a reflection in the *x*-axis
- **11.** $f(x) = 3x^5 x^3 + 5x^2 + 1$; reflection in the *y*-axis and a vertical shrink by a factor of $\frac{1}{2}$, followed by a translation 1 unit up
- **12.** The volume V (in cubic inches) of a rectangular box is given by $V = 2x^3 + 9$.
 - **a.** The function $W(x) = V\left(\frac{x}{12}\right)$ gives the volume (in cubic feet) of the box when x is measured in inches. Write a rule for W. Find and interpret W(6).

b. The function
$$Z(x) = W\left(\frac{x}{3}\right)$$
 gives the volume (in cubic yards) of the box

when x is measured in inches. Write a rule for Z.