Name

1

2.10

Inverse of a Function

For use with Exploration 2.10

Essential Question How can you sketch the graph of the inverse of a function?

EXPLORATION: Graphing Functions and Their Inverses

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Each pair of functions are *inverses* of each other. Use a graphing calculator to graph f and g in the same viewing window. What do you notice about the graphs?

a.	f(x) = 4x + 3	b. $f(x) = x^3 + 1$
	$g(x) = \frac{x-3}{4}$	$g(x) = \sqrt[3]{x-1}$

c.
$$f(x) = \sqrt{x-3}$$

 $g(x) = x^2 + 3, x \ge 0$
d. $f(x) = -\sqrt{x} + 2$
 $g(x) = (2-x)^2, x \le 2$

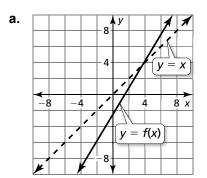
2

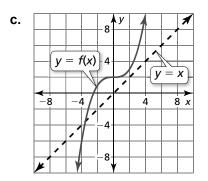
2.10 Inverse of a Function (continued)

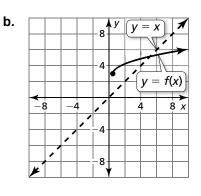
EXPLORATION: Sketching Graphs of Inverse Functions

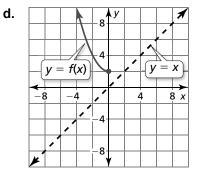
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use the graph of f to sketch the graph of g, the inverse function of f, on the same set of coordinate axes. Explain your reasoning.









Communicate Your Answer

- 3. How can you sketch the graph of the inverse of a function?
- **4.** In Exploration 1, what do you notice about the relationship between the equations of *f* and *g*? Use your answer to find *g*, the inverse function of

$$f(x) = 2x - 3.$$

Use a graph to check your answer.

Core Concepts

Horizontal Line Test

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f more than once.

Inverse is a function

Inverse is not a function

Notes:

Worked-Out Examples

Example #1

Solve y = f(x) for x. Then find the input(s) when the output is -3.

$$f(x) = -\frac{2}{3}x + 1$$

$$y = -\frac{2}{3}x + 1$$

$$y - 1 = -\frac{2}{3}x$$

$$-\frac{3}{2}(y - 1) = x$$

$$-\frac{3y - 3}{2} = x$$
Find the input when $y = x$

$$x = -\frac{3}{2}(-3 - 1)$$

$$x = -\frac{3}{2}(-3 - \frac{3}{2}(-4))$$

= 6

So, the input is 6 when the output is -3.

-3.

2.10 Practice (continued)

Example #2

Find the inverse of the function. Then graph the function and its inverse.

$$f(x) = 6x - 3$$

Method 1 Use inverse operations in reverse order.

$$f(x) = 6x - 3$$

To find the inverse, apply inverse operations in the reverse order.

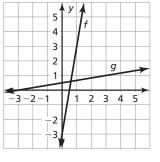
$$g(x) = \frac{1}{6}(x+3)$$

The inverse of *f* is $g(x) = \frac{1}{6}(x+3)$ or
 $g(x) = \frac{x+3}{6}$.

Method 2 Set y equal to f(x). Switch the roles of x and y and solve for y.

$$y = 6x - 3$$
$$x = 6y - 3$$
$$x + 3 = 6y$$
$$\frac{x + 3}{6} = y$$

The inverse of *f* is $g(x) = \frac{x+3}{6}$.

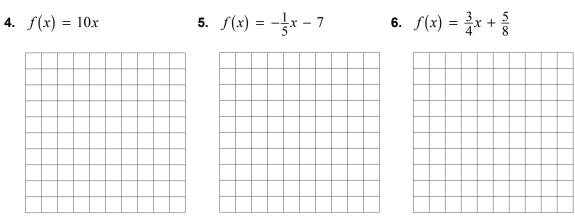


Practice A

In Exercises 1–3, solve y = f(x) for x. Then find the input(s) when the output is -6.

1. f(x) = 2x - 1 **2.** $f(x) = 1 - x^2$ **3.** $f(x) = (x - 1)^3 + 2$

In Exercises 4–6, find the inverse of the function. Then graph the function and its inverse.



Copyright © Big Ideas Learning, LLC All rights reserved.

Name

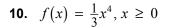
2.10 Practice (continued)

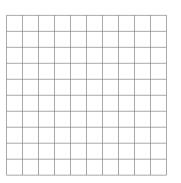
In Exercises 7 and 8, determine whether each pair of functions *f* and *g* are inverses. Explain your reasoning.

x	-4	-3	-2	-1	0	1	8.	x	1	2	3	4	5	6	
<i>f</i> (<i>x</i>)	17	13	9	5	1	-3		<i>f</i> (<i>x</i>)	-1	-2	-4	-5	-8	-10	
x	17	13	9	5	1	-3		x	-1	-0.5	-0.25	5 -0	.2 –	0.125	_

In Exercises 9 and 10, find the inverse of the function. Then graph the function and its inverse.

9. $f(x) = (x + 2)^3$





In Exercises 11 and 12, use the graph to determine whether the inverse of f is a function. Explain your reasoning.

In Exercises 13 and 14, determine whether the functions are inverse functions.

13. $f(x) = \frac{4x}{5} - 1, g(x) = \frac{5x + 1}{4}$

14.
$$f(x) = -(x-2)^5 + 6, g(x) = 2 + (6-x)^{1/5}$$

Practice B

In Exercises 1–3, solve y = f(x) for x. Then find the input(s) when the output is -3.

1.
$$f(x) = -\frac{4}{3}x + 2$$
 2. $f(x) = 25x^4$ **3.** $f(x) = (x - 3)^2 - 4$

In Exercises 4–6, find the inverse of the function. Then graph the function and its inverse.

- **4.** f(x) = -3x + 4 **5.** $f(x) = -\frac{1}{3}x + 1$ **6.** $f(x) = \frac{2}{5}x - \frac{1}{5}$
- 7. Describe and correct the error in finding the inverse function.

$$\begin{array}{rcl}
& f(x) = 3x - 8 \\
& y = 3x - 8 \\
& x = 3y - 8 \\
& g(x) = 3x - 8
\end{array}$$

In Exercises 8–10, find the inverse function. Then graph the function and its inverse.

- **8.** $f(x) = -9x^2, x \le 0$ **9.** $f(x) = (x 1)^3$ **10.** $f(x) = x^6, x \le 0$
- 11. Find the inverse of the function $f(x) = 8x^3$ by switching the roles of x and y and solving for y. Then find the inverse of the function f by using inverse operations in the reverse order. Which method do you prefer? Explain.

In Exercises 12–15, determine whether the functions are inverse functions.

- **12.** f(x) = 6x + 1; g(x) = 6x 1 **13.** $f(x) = \frac{\sqrt[3]{x-6}}{2}; g(x) = 8x^3 + 6$ **14.** $f(x) = \frac{5-x}{2}; g(x) = 5 - 2x$ **15.** $f(x) = 4x^2 + 3; g(x) = -\frac{x-3}{4}$
- **16.** The volume of a sphere is given by $V = \frac{4}{3}\pi r^3$, where r is the radius.
 - a. Find the inverse function. Describe what it represents.
 - **b.** Find the radius of a sphere with a volume of 146 cubic meters.