3.3

Logarithms and Logarithmic Functions For use with Exploration 3.3

Essential Question What are some of the characteristics of the graph of a logarithmic function?

Every exponential function of the form $f(x) = b^x$, where b is a positive real number other than 1, has an inverse function that you can denote by $g(x) = \log_b x$. This inverse function is called a *logarithmic function with base b*.

1 EXPLORATION: Rewriting Exponential Equations

Work with a partner. Find the value of x in each exponential equation. Explain your reasoning. Then use the value of x to rewrite the exponential equation in its equivalent logarithmic form, $x = \log_b y$.

a.
$$2^x = 8$$
 b. $3^x = 9$ **c.** $4^x = 2$

d.
$$5^x = 1$$
 e. $5^x = \frac{1}{5}$ **f.** $8^x = 4$

EXPLORATION: Graphing Exponential and Logarithmic Functions

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Complete each table for the given exponential function. Use the results to complete the table for the given logarithmic function. Explain your reasoning. Then sketch the graphs of f and g in the same coordinate plane.

а.	x	-2	-1	0	1	2
	$f(x) = 2^x$					

x					
$g(x) = \log_2 x$	-2	-1	0	1	2

3

b.

3.3 Logarithms and Logarithmic Functions (continued)

EXPLORATION: Graphing Exponential and Logarithmic Functions (continued)

x	-2	-1	0	1	2
$f(x) = 10^x$					

x					
$g(x) = \log_{10} x$	-2	-1	0	1	2

EXPLORATION: Characteristics of Graphs of Logarithmic Functions

Work with a partner. Use the graphs you sketched in Exploration 2 to determine the domain, range, x-intercept, and asymptote of the graph of $g(x) = \log_b x$, where b is a positive real number other than 1. Explain your reasoning.

Communicate Your Answer

- 4. What are some of the characteristics of the graph of a logarithmic function?
- **5.** How can you use the graph of an exponential function to obtain the graph of a logarithmic function?

Core Concepts

Definition of Logarithm with Base b

Let b and y be positive real numbers with $b \neq 1$. The logarithm of y with base b is denoted by $\log_b y$ and is defined as

 $\log_b y = x$ if and only if $b^x = y$.

The expression $\log_b y$ is read as "log base b of y."

Notes:

Parent Graphs for Logarithmic Functions

The graph of $f(x) = \log_b x$ is shown below for b > 1 and for 0 < b < 1. Because $f(x) = \log_b x$ and $g(x) = b^x$ are inverse functions, the graph of $f(x) = \log_b x$ is the reflection of the graph of $g(x) = b^x$ in the line y = x.

Graph of $f(x) = \log_b x$ for b > 1 Graph of $f(x) = \log_b x$ for 0 < b < 1

Note that the y-axis is a vertical asymptote of the graph of $f(x) = \log_b x$. The domain of $f(x) = \log_b x$ is x > 0, and the range is all real numbers.

Notes:

3.3 Practice (continued)

Worked-Out Examples

Example #1

Rewrite the equation in logarithmic form.

 $125^{2/3} = 25$, so $\log_{125} 25 = \frac{2}{3}$.

Example #2

Evaluate the logarithm.

$$\log_4 0.25 = \log_4 \frac{1}{4} = \log_4 4^{-1} = -1$$

Practice A

In Exercises 1–4, rewrite the equation in exponential form.

1.
$$\log_{10} 1000 = 3$$
 2. $\log_5 \frac{1}{25} = -2$ **3.** $\log_{10} 1 = 0$ **4.** $\log_{1/4} 64 = -3$

In Exercises 5–8, rewrite the equation in logarithmic form.

5.
$$12^2 = 144$$
 6. $20^{-1} = \frac{1}{20}$ **7.** $216^{1/3} = 6$ **8.** $4^0 = 1$

In Exercises 9–12, evaluate the logarithm.

9. $\log_4 64$ **10.** $\log_{1/8} 1$ **11.** $\log_2 \frac{1}{32}$ **12.** $\log_{1/25} \frac{1}{5}$

In Exercises 13 and 14, simplify the expression.

13. $13^{\log_{13} 6}$ **14.** $\ln e^{x^3}$

In Exercises 15 and 16, find the inverse of the function.

15.
$$y = 15^{x} + 10$$
 16. $y = \ln(2x) - 8$

In Exercises 17 and 18, graph the function. Determine the asymptote of the function.

109

17.
$$y = \log_2(x + 1)$$

18. $y = \log_{1/2} x - 4$

Practice B

In Exercises 1–3, rewrite the equation in exponential form.

1. $\log_9 1 = 0$ **2.** $\log_6 216 = 3$ **3.** $\log_2 \frac{1}{4} = -2$

In Exercises 4–6, rewrite the equation in logarithmic form.

4. $13^{-2} = \frac{1}{169}$ **5.** $4^{3/2} = 8$ **6.** $81^{1/2} = 9$

In Exercises 7–12, evaluate the logarithm.

7. $\log_8 64$ 8. $\log_2 32$ 9. $\log_{10} 1$ 10. $\log_3 \frac{1}{81}$ 11. $\log_2 0.125$ 12. $\log_{10} 0.01$

In Exercises 13–15, evaluate the logarithm using a calculator. Round your answer to three decimal places.

13. $\log(\frac{1}{5})$ **14.** $2 \ln(1.4)$ **15.** $\ln(0.4) - 2$

16. The decibel level *D* of sound is given by the equation $D = 10 \log \left(\frac{I}{10^{-12}}\right)$, where

I is the intensity of the sound. The pain threshold for sound is 125 decibels. Does a sound with an intensity of 10 exceed the pain threshold? Explain.

In Exercises 17–19, simply the expression.

17. $e^{\ln 7x}$ **18.** $10^{\log 18}$ **19.** $\log(10^{3x})$

In Exercises 20–25, find the inverse of the function.

- **20.** $y = 0.75^x$ **21.** $y = \log_{3/4} x$ **22.** $y = \log\left(\frac{x}{2}\right)$
- **23.** $y = \ln(x+2)$ **24.** $y = e^{x-3}$ **25.** $y = 6^x + 2$
- **26.** The length ℓ (in inches) of an alligator and its weight w (in pounds) are related by the function $\ell = 27.1 \ln w 32.8$.
 - **a.** Estimate the length (in inches) of an alligator that weighs 250 pounds. What is its length in feet?
 - **b.** Find the inverse of the given function. Use the inverse function to find the weight of a 14-foot alligator. (*Hint*: Convert to inches first.)