\qquad

3.6
 Solving Exponential and Logarithmic Equations
 For use with Exploration 3.6

Essential Question How can you solve exponential and logarithmic equations?

1 EXPLORATION: Solving Exponential and Logarithmic Equations

Work with a partner. Match each equation with the graph of its related system of equations. Explain your reasoning. Then use the graph to solve the equation.
a. $e^{x}=2$
b. $\quad \ln x=-1$
c. $2^{x}=3^{-x}$
d. $\log _{4} x=1$
e. $\log _{5} x=\frac{1}{2}$
f. $4^{x}=2$
A.

B.

C.

D.

E.

F.

\qquad
3.6 Solving Exponential and Logarithmic Equations (continued)

2 EXPLORATION: Solving Exponential and Logarithmic Equations
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Look back at the equations in Explorations 1(a) and 1(b). Suppose you want a more accurate way to solve the equations than using a graphical approach.
a. Show how you could use a numerical approach by creating a table. For instance, you might use a spreadsheet to solve the equations.
b. Show how you could use an analytical approach. For instance, you might try solving the equations by using the inverse properties of exponents and logarithms.

Communicate Your Answer

3. How can you solve exponential and logarithmic equations?
4. Solve each equation using any method. Explain your choice of method.
a. $16^{x}=2$
b. $2^{x}=4^{2 x+1}$
c. $2^{x}=3^{x+1}$
d. $\quad \log x=\frac{1}{2}$
e. $\ln x=2$
f. $\log _{3} x=\frac{3}{2}$
\qquad
\qquad
3.6 $\begin{aligned} & \text { Practice } \\ & \text { For use after }\end{aligned}$

Core Concepts

Property of Equality for Exponential Equations

Algebra If b is a positive real number other than 1 , then $b^{x}=b^{y}$ if and only if $x=y$.

Example If $3^{x}=3^{5}$, then $x=5$. If $x=5$, then $3^{x}=3^{5}$.
Notes:

Property of Equality for Logarithmic Equations

Algebra If b, x, and y are positive real numbers with $b \neq 1$, then $\log _{b} x=\log _{b} y$ if and only if $x=y$.

Example If $\log _{2} x=\log _{2} 7$, then $x=7$. If $x=7$, then $\log _{2} x=\log _{2} 7$.

Notes:

Worked-Out Examples

Example \#1

Solve the equation.

$$
\begin{aligned}
3 e^{4 x}+9 & =15 \\
3 e^{4 x} & =6 \\
e^{4 x} & =2 \\
\ln e^{4 x} & =\ln 2 \\
4 x & =\ln 2 \\
x & =\frac{1}{4} \ln 2 \\
x & \approx 0.173
\end{aligned}
$$

\qquad
\qquad

3.6 Practice (continued)

Example \#2

Solve the equation.

$$
\begin{aligned}
\log _{2}(3 x-4) & =\log _{2} 5 \\
3 x-4 & =5 \\
3 x & =9 \\
x & =3
\end{aligned}
$$

Practice A

In Exercises 1-6, solve the equation.

1. $2^{2 x+4}=2^{5 x-8}$
2. $4^{2 x-1}=8^{x+2}$
3. $3^{x+3}=5$
4. $\left(\frac{1}{5}\right)^{3 x-2}=\sqrt{25^{x}}$
5. $12 e^{1-x}=500$
6. $-14+3 e^{x}=11$

In Exercises 7-11, solve the equation. Check for extraneous solutions.
7. $2=\log _{3}(4 x)$
8. $\ln \left(x^{2}+3\right)=\ln (4)$
9. $\log _{8}\left(x^{2}-5\right)=\frac{2}{3}$
10. $\ln x+\ln (x+2)=\ln (x+6)$
11. $\log _{2}(x+5)-\log _{2}(x-2)=3$
\qquad

3.6 Practice (continued)

12. Solve the inequality $\log x \leq \frac{1}{2}$.
13. Your parents buy juice for your graduation party and leave it in their hot car. When they take the cans out of the car and move them to the basement, the temperature of the juice is $80^{\circ} \mathrm{F}$. The room temperature of the basement is $60^{\circ} \mathrm{F}$, and the cooling rate of the juice is $r=0.0147$. Using Newton's Law of Cooling, how long will it take to cool the juice to $63^{\circ} \mathrm{F}$?
14. Earthquake intensity is measured by the formula $R=\log \left(\frac{I}{I_{0}}\right)$ where R is the Richter scale rating of an earthquake, I is the intensity of the earthquake, and I_{0} is the intensity of the smallest detectable wave. In 1906, an earthquake in San Francisco had an estimated measure of 7.8 on the Richter scale. In the same year, another earthquake had an intensity level four times stronger than the San Francisco earthquake giving it a Richter scale rating of $R_{2}=\log \left(\frac{4 I}{I_{0}}\right)$. What was the Richter scale rating on a scale of $1-10$ of the other earthquake?
\qquad

Practice B

In Exercises 1-6, solve the equation.

1. $9^{3 x-5}=81^{3 x+2}$
2. $7^{x}=32$
3. $9^{3 x+6}=\left(\frac{1}{3}\right)^{8-x}$
4. $6^{4 x}=13$
5. $2 e^{3 x}+6=10$
6. $4 e^{2 x}-7=1$
7. Fifty grams of radium are stored in a container. The amount R (in grams) of radium present after t years can be modeled by $R=50 e^{-0.00043 t}$.
a. After how many years will only 20 grams of radium be present?
b. Seventy-five grams of radium are stored in a different container. The amount R (in grams) of radium present after t years can be modeled by $R=75 e^{-0.00043 t}$. Will it take more years or fewer years for only 20 grams of the radium in this container to be present, compared to the answer in part (a)? Explain.

In Exercises 8-13, solve the equation.

8. $\ln (5 x-2)=\ln (x+6)$
9. $\log (3 x+5)=\log 6$
10. $\log _{2}(3 x+12)=4$
11. $\log _{3}(3 x+7)=\log _{3}(10 x)$
12. $\log _{2}\left(x^{2}-2 x+1\right)=4$
13. $\log _{3}\left(x^{2}+x+7\right)=3$

In Exercises 14-17, solve the equation. Check for extraneous solutions.

14. $\ln x+\ln (x-2)=5$
15. $\log _{5} 2 x^{2}+\log _{5} 8=2$
16. $\log _{3}(-x)+\log _{3}(x+8)=2$
17. $\log _{2}(x+2)+\log _{2}(x+5)=4$

In Exercises 18-20, solve the inequality.

18. $e^{x-2}<8$
19. $\ln x>5$
20. $-2 \log _{3} x+2 \leq 10$
21. You deposit $\$ 2000$ in Account A, which pays 2.25% annual interest compounded monthly. You deposit another \$2000 in Account B, which pays 3\% annual interest compounded monthly. When is the sum of the balance in both accounts at least $\$ 5000$?
