\qquad

Comparing Linear, Exponential, and Quadratic Functions

 For use with Exploration 3.7Essential Question How can you compare the growth rates of linear, exponential, and quadratic functions?

1 EXPLORATION: Comparing Speeds

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Three cars start traveling at the same time. The distance traveled in t minutes is y miles. Complete each table and sketch all three graphs in the same coordinate plane. Compare the speeds of the three cars. Which car has a constant speed? Which car is accelerating the most? Explain your reasoning.

\boldsymbol{t}	$\boldsymbol{y}=\boldsymbol{t}$
0	
0.2	
0.4	
0.6	
0.8	
1.0	

\boldsymbol{t}	$\boldsymbol{y}=\mathbf{2}^{\boldsymbol{t}} \mathbf{- \mathbf { 1 }}$
0	
0.2	
0.4	
0.6	
0.8	
1.0	

\boldsymbol{t}	$\boldsymbol{y}=\boldsymbol{t}^{\mathbf{2}}$
0	
0.2	
0.4	
0.6	
0.8	
1.0	

\qquad
3.7 Comparing Linear, Exponential, and Quadratic Functions (continued)

2 EXPLORATION: Comparing Speeds

Work with a partner. Analyze the speeds of the three cars over the given time periods. The distance traveled in t minutes is y miles. Which car eventually overtakes the others?

\boldsymbol{t}	$\boldsymbol{y}=\boldsymbol{t}$
1.0	
1.5	
2.0	
2.5	
3.0	
3.5	
4.0	
4.5	
5.0	

\boldsymbol{t}	$\boldsymbol{y}=\mathbf{2}^{\boldsymbol{t}} \mathbf{- 1}$
1.0	
1.5	
2.0	
2.5	
3.0	
3.5	
4.0	
4.5	
5.0	

\boldsymbol{t}	$\boldsymbol{y}=\boldsymbol{t}^{\mathbf{2}}$
1.0	
1.5	
2.0	
2.5	
3.0	
3.5	
4.0	
4.5	
5.0	

Communicate Your Answer

3. How can you compare the growth rates of linear, exponential, and quadratic functions?
4. Which function has a growth rate that is eventually much greater than the growth rates of the other two functions? Explain your reasoning.
\qquad
\qquad

Core Concepts

Linear, Exponential, and Quadratic Functions

Linear Function

$$
y=m x+b
$$

Exponential Function
$y=a b^{x}$

Quadratic Function

$$
y=a x^{2}+b x+c
$$

Notes:

Differences and Ratios of Functions

You can use patterns between consecutive data pairs to determine which type of function models the data. The differences of consecutive y-values are called first differences. The differences of consecutive first differences are called second differences.

- Linear Function The first differences are constant.
- Exponential Function Consecutive y-values have a common ratio.
- Quadratic Function The second differences are constant.

In all cases, the differences of consecutive x-values need to be constant.

Notes:

\qquad

3.7 Practice (continued)

Comparing Functions Using Average Rates of Change

- As a and b increase, the average rate of change between $x=a$ and $x=b$ of an increasing exponential function $y=f(x)$ will eventually exceed the average rate of change between $x=a$ and $x=b$ of an increasing quadratic function $y=g(x)$ or an increasing linear function $y=h(x)$. So, as x increases, $f(x)$ will eventually exceed $g(x)$ or $h(x)$.
- As a and b increase, the average rate of change between $x=a$ and $x=b$ of an increasing quadratic function $y=g(x)$ will eventually exceed the average rate of change between $x=a$ and $x=b$ of an increasing linear function $y=h(x)$. So, as x increases, $g(x)$ will eventually exceed $h(x)$.

Notes:

Worked-Out Examples

Example \#1

Plot the points. Tell whether the points appear to represent a linear, an exponential, or a quadratic function.
$(-2,-1),(-1,0),(1,2),(2,3),(0,1)$
The points appear to lie on a straight line. So, they appear to represent a linear function.

Example \#2

Tell whether the data represent a linear, an exponential, or a quadratic function. Then write the function.
$(-3,8),(-2,4),(-1,2),(0,1),(1,0.5)$
Consecutive y-values have a common ratio of $\frac{1}{2}$. So, the table represents an exponential function with $b=\frac{1}{2}$. When $x=0$, $y=1$. So, $a=1$.
$y=a b^{x}$
$y=1\left(\frac{1}{2}\right)^{x}$
$y=\left(\frac{1}{2}\right)^{x}$

So, the exponential function is $y=\left(\frac{1}{2}\right)^{x}$.
\qquad
\qquad

3.7 Practice (continued)

Extra Practice

In Exercises 1-4, plot the points. Tell whether the points appear to represent a linear, an exponential, or a quadratic function.

1. $(-3,2),(-2,4),(-4,4),(-1,8),(-5,8)$

2. $(4,0),(2,1),(0,3),(-1,6),(-2,10)$

3. $(-3,1),(-2,2),(-1,4),(0,8),(2,14)$

4. $(2,-4),(0,-2),(-2,0),(-4,2),(-6,4)$

In Exercises 5 and 6, tell whether the table of values represents a linear, an exponential, or a quadratic function.
5.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	7	4	1	-2	-5

6.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	6	2	0	2	6

In Exercises 7 and 8, tell whether the data represent a linear, an exponential, or a quadratic function. Then write the function.
7. $(-2,-4),(-1,-1),(0,2),(1,5),(2,8)$
8. $(-2,-9),(-1,0),(0,3),(1,0),(2,-9)$
\qquad

3.7 Practice (continued)

9. A ball is dropped from a height of 305 feet. The table shows the height h (in feet) of the ball t seconds after being dropped. Let the time t represent the independent variable. Tell whether the data can be modeled by a linear, an exponential, or a quadratic function. Explain.

Time, \boldsymbol{t}	0	1	2	3	4
Height, \boldsymbol{h}	305	289	241	161	49

Practice B

In Exercises 1 and 2, tell whether the points appear to represent a linear, an exponential, or a quadratic function.
1.

2.

In Exercises 3-6, plot the points. Tell whether the points appear to represent a linear, an exponential, or a quadratic function.
3. $\left(2, \frac{1}{9}\right),\left(1, \frac{1}{3}\right),(0,1),(-1,3),(-2,9)$
4. $(-1,3),(0,0),(1,-1),(2,0),(3,3)$
5. $(-4,-2),(-2,-1),(0,0),(2,1),(4,2)$
6. $(-3,-2),(-2,-1),(-1,0),(0,1),(1,2)$

In Exercises 7-10, tell whether the table of values represents a linear, an exponential, or a quadratic function.

7. | \boldsymbol{x} | -3 | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \boldsymbol{y} | 0.9 | 0.4 | 0.1 | 0 | 0.1 | 0.4 |
8.

\boldsymbol{x}	1	2	3	4	5	6
\boldsymbol{y}	1	-1	-3	-5	-7	-9

9.

x	1	2	3	4	5	6
y	9	4	1	0	1	4

10.

\boldsymbol{x}	-1	0	1	2	3
\boldsymbol{y}	6	3	$\frac{3}{2}$	$\frac{3}{4}$	$\frac{3}{8}$

11. Write a function that has constant second differences of 4 .
