1

3.7

Comparing Linear, Exponential, and Quadratic Functions For use with Exploration 3.7

Essential Question How can you compare the growth rates of linear, exponential, and quadratic functions?

EXPLORATION: Comparing Speeds

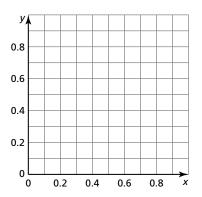
Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Three cars start traveling at the same time. The distance traveled in *t* minutes is *y* miles. Complete each table and sketch all three graphs in the same coordinate plane. Compare the speeds of the three cars. Which car has a constant speed? Which car is accelerating the most? Explain your reasoning.

t	y = t
0	
0.2	
0.4	
0.6	
0.8	
1.0	

t	$y = 2^t - 1$
0	
0.2	
0.4	
0.6	
0.8	
1.0	

t	$y = t^2$
0	
0.2	
0.4	
0.6	
0.8	
1.0	



2

3.7 Comparing Linear, Exponential, and Quadratic Functions (continued)

EXPLORATION: Comparing Speeds

Work with a partner. Analyze the speeds of the three cars over the given time periods. The distance traveled in *t* minutes is *y* miles. Which car eventually overtakes the others?

t	y = t
1.0	
1.5	
2.0	
2.5	
3.0	
3.5	
4.0	
4.5	
5.0	

t	$y = 2^t - 1$	t	$y = t^2$
1.0		1.0	
1.5		1.5	
2.0		2.0	
2.5		2.5	
3.0		3.0	
3.5		3.5	
4.0		4.0	
4.5		4.5	
5.0		5.0	

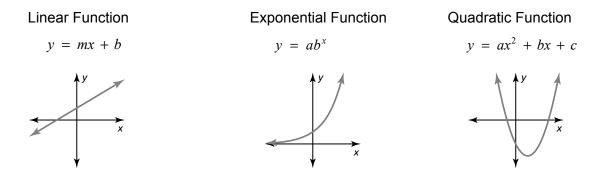
Communicate Your Answer

- **3.** How can you compare the growth rates of linear, exponential, and quadratic functions?
- **4.** Which function has a growth rate that is eventually much greater than the growth rates of the other two functions? Explain your reasoning.

Name

Core Concepts

Linear, Exponential, and Quadratic Functions



Notes:

Differences and Ratios of Functions

You can use patterns between consecutive data pairs to determine which type of function models the data. The differences of consecutive *y*-values are called *first differences*. The differences of consecutive first differences are called *second differences*.

- Linear Function The first differences are constant.
- **Exponential Function** Consecutive *y*-values have a common *ratio*.
- Quadratic Function The second differences are constant.

In all cases, the differences of consecutive x-values need to be constant.

Notes:

3.7 **Practice** (continued)

Comparing Functions Using Average Rates of Change

- As a and b increase, the average rate of change between x = a and x = b of an increasing exponential function y = f(x) will eventually exceed the average rate of change between x = a and x = b of an increasing quadratic function y = g(x) or an increasing linear function y = h(x). So, as x increases, f(x) will eventually exceed g(x) or h(x).
- As a and b increase, the average rate of change between x = a and x = b of an increasing • quadratic function y = g(x) will eventually exceed the average rate of change between x = a and x = b of an increasing linear function y = h(x). So, as x increases, g(x) will eventually exceed h(x).

Notes:

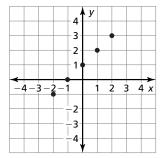
Worked-Out Examples

Example #1

Plot the points. Tell whether the points appear to represent a linear, an exponential, or a guadratic function.

(-2, -1), (-1, 0), (1, 2), (2, 3), (0, 1)

The points appear to lie on a straight line. So, they appear to represent a linear function.



Example #2

Tell whether the data represent a linear, an exponential, or a quadratic function. Then write the function.

(-3, 8), (-2, 4), (-1, 2), (0, 1), (1, 0.5)

Consecutive *y*-values have a common ratio of $\frac{1}{2}$. So, the table represents an exponential function with $b = \frac{1}{2}$. When x = 0, +1 +1+1y = 1. So, a = 1. -3-2-10 $y = ab^x$ x $y = 1 \left(\frac{1}{2}\right)^{x}$ 8 4 2 1 y $y = \left(\frac{1}{2}\right)^x$ $\times \frac{1}{2}$ $\times \frac{1}{2}$ $\times \frac{1}{2}$ So, the exponential function is $y = \left(\frac{1}{2}\right)^{x}$.

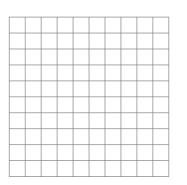
+11 0.5

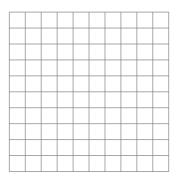
Practice (continued) 3.7

Extra Practice

In Exercises 1-4, plot the points. Tell whether the points appear to represent a *linear*, an *exponential*, or a *quadratic* function.

1. (-3, 2), (-2, 4), (-4, 4), (-1, 8), (-5, 8)**2.** (-3, 1), (-2, 2), (-1, 4), (0, 8), (2, 14)





3. (4, 0), (2, 1), (0, 3), (-1, 6), (-2, 10)**4.** (2, -4), (0, -2), (-2, 0), (-4, 2), (-6, 4)

In Exercises 5 and 6, tell whether the table of values represents a linear, an exponential, or a quadratic function.

x	-2	-1	0	1	2
у	7	4	1	-2	-5
x	-2	-1	0	1	2
у	6	2	0	2	6
	у х	x -2 y 7 x -2	x = -2 = -1 y = 7 4 x = -2 = -1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x -2 -1 0 1 y 7 4 1 -2 x -2 -1 0 1

In Exercises 7 and 8, tell whether the data represent a linear, an exponential, or a quadratic function. Then write the function.

7. (-2, -4), (-1, -1), (0, 2), (1, 5), (2, 8)**8.** (-2, -9), (-1, 0), (0, 3), (1, 0), (2, -9)

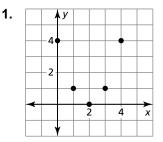
3.7 **Practice** (continued)

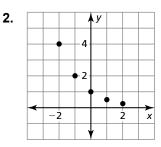
9. A ball is dropped from a height of 305 feet. The table shows the height *h* (in feet) of the ball *t* seconds after being dropped. Let the time *t* represent the independent variable. Tell whether the data can be modeled by a *linear*, an *exponential*, or a *quadratic* function. Explain.

Time, <i>t</i>	0	1	2	3	4
Height, <i>h</i>	305	289	241	161	49

Practice B

In Exercises 1 and 2, tell whether the points appear to represent a *linear*, an *exponential*, or a *quadratic* function.





In Exercises 3–6, plot the points. Tell whether the points appear to represent a *linear*, an *exponential*, or a *quadratic* function.

- **3.** $\left(2, \frac{1}{9}\right), \left(1, \frac{1}{3}\right), \left(0, 1\right), \left(-1, 3\right), \left(-2, 9\right)$
- **4.** (-1, 3), (0, 0), (1, -1), (2, 0), (3, 3)
- **5.** (-4, -2), (-2, -1), (0, 0), (2, 1), (4, 2)
- **6.** (-3, -2), (-2, -1), (-1, 0), (0, 1), (1, 2)

In Exercises 7–10, tell whether the table of values represents a *linear*, an *exponential*, or a *quadratic* function.

x	-3	-2	-1	0	1	2
у	0.9	0.4	0.1	0	0.1	0.4

9.	x	1	2	3	4	5	6
	у	9	4	1	0	1	4

x	1	2	3	4	5	6
У	1	-1	-3	-5	-7	-9

0.	x	-1	0	1	2	3
	y	6	3	$\frac{3}{2}$	$\frac{3}{4}$	$\frac{3}{8}$

11. Write a function that has constant second differences of 4.

Copyright © Big Ideas Learning, LLC All rights reserved.

8.

1