CHAPTER 4

Rational Functions
4.1 Graphing Rational Functions 137
4.2 Multiplying and Dividing Rational Expressions 145
4.3 Adding and Subtracting Rational Expressions 151
4.4 Solving Rational Equations 157

\qquad
\qquad

Chapter 4
 Maintaining Mathematical Proficiency

Evaluate.

1. $\frac{2}{3}+\frac{2}{3}$
2. $\frac{1}{5}+\frac{1}{4}$
3. $-\frac{5}{6}+\frac{3}{4}$
4. $\frac{9}{11}-\frac{2}{11}$
5. $\frac{1}{5}-\frac{7}{10}$
6. $\frac{5}{8}-\frac{1}{6}$
7. $-\frac{3}{8}+\frac{2}{9}-\frac{1}{2}$
8. $\frac{3}{4}-\left(-\frac{1}{8}\right)$
9. $\frac{13}{18}+\frac{2}{9}-\frac{1}{2}$

Simplify.
10. $\frac{\frac{2}{3}}{\frac{8}{15}}$
11. $\frac{\frac{1}{6}}{-\frac{2}{3}}$
12. $\frac{\frac{3}{4}}{12}$
13. $\frac{1}{\frac{1}{5}+\frac{2}{5}}$
14. $\frac{2}{\frac{4}{9}-\frac{2}{3}}$
15. $\frac{\frac{1}{2}+\frac{1}{5}}{\frac{7}{10}-\frac{2}{5}}$
\qquad

4.1
 Graphing Rational Functions

For use with Exploration 4.1
Essential Question What are some of the characteristics of the graph of a rational function?

The parent function for rational functions with a linear numerator and a linear denominator is

$$
f(x)=\frac{1}{x} . \quad \text { Parent function }
$$

The graph of this function, shown at the right, is a hyperbola.

1 EXPLORATION: Identifying Graphs of Rational Functions

Work with a partner. Each function is a transformation of the graph of the parent function $f(x)=\frac{1}{x}$. Match the function with its graph. Explain your reasoning. Then describe the transformation.
a. $g(x)=\frac{1}{x-1}$
b. $g(x)=\frac{-1}{x-1}$
c. $g(x)=\frac{x+1}{x-1}$
d. $g(x)=\frac{x-2}{x+1}$
e. $g(x)=\frac{x}{x+2}$
f. $g(x)=\frac{-x}{x+2}$
A.

B.

\qquad
4.1 Graphing Rational Functions (continued)

1 EXPLORATION: Identifying Graphs of Rational Functions (continued)
C.

D.

E.

F.

Communicate Your Answer

2. What are some of the characteristics of the graph of a rational function?
3. Determine the intercepts, asymptotes, domain, and range of the rational function $g(x)=\frac{x-a}{x-b}$.
\qquad
\qquad

Practice

Core Concepts

Parent Function for Simple Rational Functions

The graph of the parent function $f(x)=\frac{1}{x}$ is a hyperbola, which consists of two symmetrical parts called branches. The domain and range are all nonzero real numbers.

Any function of the form $g(x)=\frac{a}{x}(a \neq 0)$ has the same asymptotes, domain, and range as the function $f(x)=\frac{1}{x}$.

Notes:

Graphing Translations of Simple Rational Functions

To graph a rational function of the form $y=\frac{a}{x-h}+k$, follow these steps:
Step 1 Draw the asymptotes $x=h$ and $y=k$.
Step 2 Plot points to the left and to the right of the vertical asymptote.

Step 3 Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

Notes:

\qquad
4.1 Practice (continued)

Worked-Out Examples

Example \#1

Graph the function. Compare the graph with the graph of $f(x)=\frac{1}{x}$.
$g(x)=\frac{3}{x}$
Step 1 The function is of the form $g(x)=\frac{a}{x}$, so the asymptotes are $x=0$ and $y=0$. Draw the asymptotes.

Step 2 Make a table of values and plot the points. Include both positive and negative values of x.

\boldsymbol{x}	-3	-2	-1	1	2	3
\boldsymbol{y}	-1	$-\frac{3}{2}$	-3	3	$\frac{3}{2}$	1

Step 3 Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

The graph of g lies farther from the axes. Both graphs lie in the first and third quadrants and have the same asymptotes, domain, and range.

Example \#2

Graph the function. State the domain and range.

$y=\frac{1}{x+2}$
Step 1 Draw the asymptotes $x=-2$ and $y=0$.
Step 2 Plot points to the left of the vertical asymptote, such as $\left(-5,-\frac{1}{3}\right),\left(-4,-\frac{1}{2}\right)$, and $(-3,-1)$. Plot points to the right of the vertical asymptote, such as $(-1,1),\left(0, \frac{1}{2}\right)$, and $\left(1, \frac{1}{3}\right)$.
Step 3 Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

The domain is all real numbers except -2 and the range is all real numbers except 0 .

\qquad
\qquad

4.1 Practice (continued)

Practice A

In Exercises 1 and 2, graph the function. Compare the graph with the graph of $f(x)=\frac{1}{x}$.

1. $g(x)=\frac{0.25}{x}$

2. $h(x)=\frac{-2}{x}$

In Exercises 3 and 4, graph the function. State the domain and range.
3. $k(x)=\frac{1}{x-3}+5$

4. $m(x)=\frac{-3}{x}-4$

\qquad
4.1 Practice (continued)

In Exercises 5 and 6, rewrite the function in the form $g(x) \equiv \frac{a}{x-h}+k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x)=\frac{a}{x}$.
5. $g(x)=\frac{x+2}{x-5}$
6. $g(x)=\frac{2 x+8}{3 x-12}$

Practice B

In Exercises 1-3, graph the function. Compare the graph with the graph of $f(x)=\frac{1}{x}$.

1. $h(x)=\frac{12}{x}$
2. $g(x)=\frac{-8}{x}$
3. $h(x)=\frac{0.2}{x}$

In Exercises 4-15, graph the function. State the domain and range.
4. $f(x)=\frac{5}{x}-2$
5. $g(x)=\frac{3}{x+4}$
6. $y=\frac{-8}{x-3}$
7. $h(x)=\frac{-1}{x+5}$
8. $y=\frac{-2}{x+1}+3$
9. $y=\frac{9}{x-4}-2$
10. $f(x)=\frac{x+5}{x-4}$
11. $g(x)=\frac{x-3}{2 x+8}$
12. $h(x)=\frac{-8 x+3}{5 x+2}$
13. $y=\frac{3 x-1}{5 x-1}$
14. $y=\frac{-3 x}{-4 x-1}$
15. $y=\frac{-2 x+5}{-x+8}$
\qquad

4.1 Practice (continued)

In Exercises 16-21, rewrite the function in the form $g(x)=\frac{a}{x-h}+k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x)=\frac{a}{x}$.
16. $g(x)=\frac{3 x+7}{x+2}$
17. $g(x)=\frac{4 x-2}{x-3}$
18. $g(x)=\frac{4 x-10}{x+5}$
19. $g(x)=\frac{x+12}{x-3}$
20. $g(x)=\frac{5 x-30}{x+4}$
21. $g(x)=\frac{7 x-2}{x+6}$
22. You are creating statues made of cement. The mold costs $\$ 300$. The material for each statue costs $\$ 22$.
a. Estimate how many statues must be made for the average cost per statue to fall below $\$ 30$.
b. What happens to the average cost as more statues are created?
23. The concentration c of a certain drug in a patient's bloodstream t hours after an injection is given by $c(t)=\frac{t}{4 t^{2}+1}$.
a. Use a graphing calculator to graph the function. Describe a reasonable domain and range.
b. Determine the time at which the concentration is the highest.

