CHAPTER 4

Rational Functions

4.1 Graphing Rational Functions	137
4.2 Multiplying and Dividing Rational Expressions	145
4.3 Adding and Subtracting Rational Expressions	151
4.4 Solving Rational Equations	157

Chapter 4	taining Mathematica	al Proficiency
Evaluate. 1. $\frac{2}{3} + \frac{2}{3}$	2. $\frac{1}{5} + \frac{1}{4}$	3. $-\frac{5}{6} + \frac{3}{4}$
4. $\frac{9}{11} - \frac{2}{11}$	5. $\frac{1}{5} - \frac{7}{10}$	6. $\frac{5}{8} - \frac{1}{6}$
7. $-\frac{3}{8} + \frac{2}{9} - \frac{1}{2}$	8. $\frac{3}{4} - \left(-\frac{1}{8}\right)$	9. $\frac{13}{18} + \frac{2}{9} - \frac{1}{2}$
Simplify. 10. $\frac{\frac{2}{3}}{\frac{8}{15}}$	11. $\frac{\frac{1}{6}}{-\frac{2}{3}}$	12. $\frac{\frac{3}{4}}{12}$
13. $\frac{1}{\frac{1}{5} + \frac{2}{5}}$	14. $\frac{2}{\frac{4}{9}-\frac{2}{3}}$	15. $\frac{\frac{1}{2} + \frac{1}{5}}{\frac{7}{10} - \frac{2}{5}}$

Name

4.1 Graphing Rational Functions For use with Exploration 4.1

Essential Question What are some of the characteristics of the graph of a rational function?

The parent function for rational functions with a linear numerator and a linear denominator is

$$f(x) = \frac{1}{x}$$
. Parent function

The graph of this function, shown at the right, is a *hyperbola*.

EXPLORATION: Identifying Graphs of Rational Functions

Work with a partner. Each function is a transformation of the graph of the parent function $f(x) = \frac{1}{x}$. Match the function with its graph. Explain your reasoning. Then describe the transformation.

a.
$$g(x) = \frac{1}{x-1}$$
 b. $g(x) = \frac{-1}{x-1}$ **c.** $g(x) = \frac{x+1}{x-1}$

d.
$$g(x) = \frac{x-2}{x+1}$$
 e. $g(x) = \frac{x}{x+2}$ **f.** $g(x) = \frac{-x}{x+2}$

4.1 Graphing Rational Functions (continued)

Communicate Your Answer

- 2. What are some of the characteristics of the graph of a rational function?
- 3. Determine the intercepts, asymptotes, domain, and range of the rational function

$$g(x)=\frac{x-a}{x-b}.$$

Core Concepts

Parent Function for Simple Rational Functions

The graph of the parent function $f(x) = \frac{1}{x}$ is a *hyperbola*, which consists of two symmetrical parts called branches. The domain and range are all nonzero real numbers.

Any function of the form $g(x) = \frac{a}{x}(a \neq 0)$ has the same

asymptotes, domain, and range as the function $f(x) = \frac{1}{x}$.

Notes:

Graphing Translations of Simple Rational Functions

To graph a rational function of the form $y = \frac{a}{x - h} + k$, follow these steps:

- **Step 1** Draw the asymptotes x = h and y = k.
- **Step 2** Plot points to the left and to the right of the vertical asymptote.
- **Step 3** Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

Notes:

Date

4.1 Practice (continued)

Worked-Out Examples

Example #1

Graph the function. Compare the graph with the graph of $f(x) = \frac{1}{x}$.

- $g(x) = \frac{3}{x}$
- **Step 1** The function is of the form $g(x) = \frac{a}{x}$, so the asymptotes are x = 0 and y = 0. Draw the asymptotes.
- **Step 2** Make a table of values and plot the points. Include both positive and negative values of x.

x	-3	-2	-1	1	2	3
у	-1	$-\frac{3}{2}$	-3	3	$\frac{3}{2}$	1

Step 3 Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

The graph of g lies farther from the axes. Both graphs lie in the first and third quadrants and have the same asymptotes, domain, and range.

Example #2

Graph the function. State the domain and range.

 $y = \frac{1}{x+2}$

- **Step 1** Draw the asymptotes x = -2 and y = 0.
- **Step 2** Plot points to the left of the vertical asymptote, such as $\left(-5, -\frac{1}{3}\right)$, $\left(-4, -\frac{1}{2}\right)$, and (-3, -1). Plot points to the right of the vertical asymptote, such as (-1, 1), $\left(0, \frac{1}{2}\right)$, and $\left(1, \frac{1}{3}\right)$.
- **Step 3** Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

The domain is all real numbers except -2 and the range is all real numbers except 0.

Name ____

4.1 Practice (continued)

Practice A

In Exercises 1 and 2, graph the function. Compare the graph with the graph of $f(x) = \frac{1}{x}$.

1.
$$g(x) = \frac{0.25}{x}$$

2.
$$h(x) = \frac{-2}{x}$$

In Exercises 3 and 4, graph the function. State the domain and range.

3.
$$k(x) = \frac{1}{x-3} + 5$$

4.
$$m(x) = \frac{-3}{x} - 4$$

4.1 Practice (continued)

In Exercises 5 and 6, rewrite the function in the form $g(x) = \frac{a}{x - h} + k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x) = \frac{a}{x}$.

5.
$$g(x) = \frac{x+2}{x-5}$$

6. $g(x) = \frac{2x+8}{3x-12}$

Practice B

In Exercises 1–3, graph the function. Compare the graph with the graph of $f(x) = \frac{1}{x}$.

1.
$$h(x) = \frac{12}{x}$$
 2. $g(x) = \frac{-8}{x}$ **3.** $h(x) = \frac{0.2}{x}$

In Exercises 4–15, graph the function. State the domain and range.

4. $f(x) = \frac{5}{x} - 2$ 5. $g(x) = \frac{3}{x+4}$ 6. $y = \frac{-8}{x-3}$ 7. $h(x) = \frac{-1}{x+5}$ 8. $y = \frac{-2}{x+1} + 3$ 9. $y = \frac{9}{x-4} - 2$ 10. $f(x) = \frac{x+5}{x-4}$ 11. $g(x) = \frac{x-3}{2x+8}$ 12. $h(x) = \frac{-8x+3}{5x+2}$ 13. $y = \frac{3x-1}{5x-1}$ 14. $y = \frac{-3x}{-4x-1}$ 15. $y = \frac{-2x+5}{-x+8}$

4.1 **Practice** (continued)

In Exercises 16–21, rewrite the function in the form $g(x) = \frac{a}{x-h} + k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x) = \frac{a}{x}$.

16. $g(x) = \frac{3x+7}{x+2}$ **17.** $g(x) = \frac{4x-2}{x-3}$ **18.** $g(x) = \frac{4x-10}{x+5}$

19.
$$g(x) = \frac{x+12}{x-3}$$
 20. $g(x) = \frac{5x-30}{x+4}$ **21.** $g(x) = \frac{7x-2}{x+6}$

- **22.** You are creating statues made of cement. The mold costs \$300. The material for each statue costs \$22.
 - **a.** Estimate how many statues must be made for the average cost per statue to fall below \$30.
 - **b.** What happens to the average cost as more statues are created?
- **23.** The concentration c of a certain drug in a patient's bloodstream t hours after an injection is given by $c(t) = \frac{t}{4t^2 + 1}$.
 - **a.** Use a graphing calculator to graph the function. Describe a reasonable domain and range.
 - **b.** Determine the time at which the concentration is the highest.

Date