4.2

Multiplying and Dividing Rational ExpressionsFor use with Exploration 4.2

Essential Question How can you determine the excluded values in a product or quotient of two rational expressions?

1

EXPLORATION: Multiplying and Dividing Rational Expressions

Work with a partner. Find the product or quotient of the two rational expressions. Then match the product or quotient with its excluded values. Explain your reasoning.

Product or Quotient

$$\mathbf{a.} \quad \frac{1}{x-1} \bullet \frac{x-2}{x+1} =$$

b.
$$\frac{1}{x-1} \bullet \frac{-1}{x-1} =$$

c.
$$\frac{1}{x-2} \bullet \frac{x-2}{x+1} =$$

$$\mathbf{d.} \quad \frac{x+2}{x-1} \bullet \frac{-x}{x+2} =$$

e.
$$\frac{x}{x+2} \div \frac{x+1}{x+2} =$$

$$\mathbf{f.} \quad \frac{x}{x-2} \div \frac{x+1}{x} =$$

$$\mathbf{g.} \quad \frac{x}{x+2} \div \frac{x}{x-1} =$$

h.
$$\frac{x+2}{x} \div \frac{x+1}{x-1} =$$

Excluded Values

A.
$$-1$$
, 0, and 2

B.
$$-2$$
 and 1

C.
$$-2, 0, \text{ and } 1$$

D.
$$-1$$
 and 2

E.
$$-1$$
, 0, and 1

G.
$$-2$$
 and -1

.2 Multiplying and Dividing Rational Expressions (continued)

2 **EXPLORATION:** Writing a Product or Quotient

Work with a partner. Write a product or quotient of rational expressions that has the given excluded values. Justify your answer.

a. −1

b. -1 and 3

c. -1, 0, and 3

Communicate Your Answer

- **3.** How can you determine the excluded values in a product or quotient of two rational expressions?
- **4.** Is it possible for the product or quotient of two rational expressions to have *no* excluded values? Explain your reasoning. If it is possible, give an example.

Core Concepts

Simplifying Rational Expressions

Let a, b, and c be expressions with $b \neq 0$ and $c \neq 0$.

Property
$$\frac{a\cancel{c}}{b\cancel{c}} = \frac{a}{b}$$

Divide out common factor c.

Examples
$$\frac{15}{65} = \frac{3 \bullet \cancel{5}}{13 \bullet \cancel{5}} = \frac{3}{13}$$

Divide out common factor 5.

$$\frac{4(x+3)}{(x+3)(x+3)} = \frac{4}{x+3}$$

Divide out common factor x + 3.

Notes:

Multiplying Rational Expressions

Let a, b, c, and d be expressions with $b \neq 0$ and $d \neq 0$.

$$\frac{a}{b} \bullet \frac{c}{d} = \frac{ac}{bd}$$

Simplify $\frac{ac}{bd}$ if possible.

Example

$$\frac{5x^2}{2xy^2} \bullet \frac{6xy^3}{10y} = \frac{30x^3y^3}{20xy^3} = \frac{\cancel{10} \bullet 3 \bullet \cancel{x} \bullet x^2 \bullet \cancel{y}^{\cancel{x}}}{\cancel{10} \bullet 2 \bullet \cancel{x} \bullet \cancel{y}^{\cancel{x}}} = \frac{3x^2}{2}, x \neq 0, y \neq 0$$

Notes:

Practice (continued)

Dividing Rational Expressions

Let a, b, c, and d be expressions with $b \neq 0$, $c \neq 0$, and $d \neq 0$.

Property
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \bullet \frac{d}{c} = \frac{ad}{bc}$$
 Simplify $\frac{ad}{bc}$ if possible.

Simplify
$$\frac{ad}{bc}$$
 if possible.

$$\frac{7}{x+1} \div \frac{x+2}{2x-3} = \frac{7}{x+1} \bullet \frac{2x-3}{x+2} = \frac{7(2x=3)}{(x+1)(x+2)}, \ x \neq \frac{3}{2}$$

Notes:

Worked-Out Examples

Example #1

Simplify the expression, if possible.

$$\frac{x^2 - 3x - 18}{x^2 - 7x + 6} = \frac{(x - 6)(x + 3)}{(x - 6)(x - 1)}$$
$$= \frac{x + 3}{x - 1}, x \neq 6$$

Example #2

Find the product.

$$\frac{x^2 + 3x - 4}{x^2 + 4x + 4} \cdot \frac{2x^2 + 4x}{x^2 - 4x + 3} = \frac{(x+4)(x-1)}{(x+2)(x+2)} \cdot \frac{2x(x+2)}{(x-1)(x-3)}$$
$$= \frac{2x(x+4)(x-1)(x+2)}{(x+2)(x+2)(x-1)(x-3)}$$
$$= \frac{2x(x+4)}{(x+2)(x-3)}, x \neq 1$$

4.2 Practice (continued)

Practice A

In Exercises 1–4, simplify the expression, if possible.

1.
$$\frac{2x^3 - 8x^2}{6x^2}$$

$$2. \quad \frac{5xy^3 - 2x^2y^2}{x^2y^2}$$

3.
$$\frac{x^2 - 5x + 4}{x^2 - 2x + 1}$$

$$4. \quad \frac{x^3 + 3x^2}{x^2 - 5x - 24}$$

In Exercises 5–10, find the product or the quotient.

$$5. \quad \frac{3xy}{xy^2} \bullet \frac{y}{2x}$$

$$6. \ \frac{x+y}{7xy} \div \frac{4x}{y}$$

7.
$$\frac{x(x+1)}{x-2} \div \frac{(x+1)(x-6)}{(x-6)(x-9)}$$

8.
$$\frac{x^2 - 2x - 3}{x^2 - 1} \bullet \frac{x^2 - 2x - 63}{x^2 + 4x - 21}$$

9.
$$\frac{x^2 - 2x}{x + 7} \bullet \frac{x^3 + 8}{x^3 - 4x}$$

10.
$$\frac{x^2 + 2x - 15}{x^2 - 3x - 40} \div \frac{x^2 + 8x - 9}{x^2 + x - 72}$$

Practice B

In Exercises 1-6, simplify the expression, if possible.

1.
$$\frac{4x^3}{3x^3 + 7x}$$

$$2. \quad \frac{x^2 + 5x + 6}{x^2 + 2x - 3}$$

2.
$$\frac{x^2 + 5x + 6}{x^2 + 2x - 3}$$
 3. $\frac{2x^2 - 5x}{x^2 + 7x + 12}$

4.
$$\frac{x^2 - x - 20}{x^3 + 64}$$

$$5. \quad \frac{x^4 - 16}{5x^3 - 3x^2 + 20x - 12}$$

5.
$$\frac{x^4 - 16}{5x^3 - 3x^2 + 20x - 12}$$
 6.
$$\frac{6x^3 - 6x^2 + 5x - 5}{72x^4 - 50}$$

In Exercises 7-12, find the product.

7.
$$\frac{x^4(x-4)}{x+3} \bullet \frac{(x+3)(x-2)}{x^5}$$

8.
$$\frac{x^2 + 6x}{x - 4} \bullet \frac{x^2 - 2x - 8}{x}$$

9.
$$\frac{x^2 - 2x}{x + 5} \bullet \frac{x^2 + 6x + 5}{3x}$$

10.
$$\frac{x^2 - x - 6}{x^2 + 8x + 16} \bullet \frac{3x^2 + 12x}{x^2 - 2x - 3}$$

11.
$$\frac{x^2 + 3x - 28}{x^2 - 25} \bullet (x^2 - 8x + 15)$$

12.
$$\frac{x^2 + 2x - 15}{x^2 - 9} \bullet (x^2 - x - 12)$$

In Exercises 13-16, find the quotient.

13.
$$\frac{2x^3 + 10x^2}{x^2 + x - 20} \div \frac{2x^2}{x - 4}$$

14.
$$\frac{x^2 - 10x + 21}{x + 2} \div (x^2 - 14x + 49)$$

15.
$$\frac{x^2 - 2x - 3}{x^2 + 2x - 8} \div \frac{x^2 + 4x + 3}{x^2 + 6x + 8}$$

16.
$$\frac{x^2 + x - 6}{x^2 + 7x + 12} \div \frac{x^2 - 5x + 6}{x^2 + x - 12}$$

17. Find the ratio of the perimeter to the area of the square shown.

18. Find the expression that makes the following statement true. Assume $x \neq -5$ and $x \neq -3$.

$$\frac{x+3}{x^2-8x+12} \div \frac{}{x^2+3x-10} = \frac{x+5}{x-6}$$