\qquad
\qquad

4.3
 Adding and Subtracting Rational Expressions

Essential Question How can you determine the domain of the sum or difference of two rational expressions?

1 EXPLORATION: Adding and Subtracting Rational Expressions

Work with a partner. Find the sum or difference of the two rational expressions. Then match the sum or difference with its domain. Explain your reasoning.

Sum or Difference

a. $\frac{1}{x-1}+\frac{3}{x-1}=$
b. $\frac{1}{x-1}+\frac{1}{x}=$
c. $\frac{1}{x-2}+\frac{1}{2-x}=$
d. $\frac{1}{x-1}+\frac{-1}{x+1}=$
e. $\frac{x}{x+2}-\frac{x+1}{2+x}=$
f. $\frac{x}{x-2}-\frac{x+1}{x}=$
g. $\frac{x}{x+2}-\frac{x}{x-1}=$
h. $\frac{x+2}{x}-\frac{x+1}{x}=$

Domain

A. all real numbers except -2
B. all real numbers except -1 and 1
C. all real numbers except 1
D. all real numbers except 0
E. all real numbers except -2 and 1
F. all real numbers except 0 and 1
G. all real numbers except 2
H. all real numbers except 0 and 2
\qquad
4.3 Adding and Subtracting Rational Expressions (continued)

2 EXPLORATION: Writing a Sum or Difference
Work with a partner. Write a sum or difference of rational expressions that has the given domain. Justify your answer.
a. all real numbers except -1
b. all real numbers except -1 and 3
c. all real numbers except $-1,0$, and 3

Communicate Your Answer

3. How can you determine the domain of the sum or difference of two rational expressions?
4. Your friend found a sum as follows. Describe and correct the error(s).
$\frac{x}{x+4}+\frac{3}{x-4}=\frac{x+3}{2 x}$
\qquad
\qquad
4.3

Practice
For use after Lesson 4.3

Core Concepts

Adding or Subtracting with Like Denominators

Let a, b, and c be expressions with $c \neq 0$.

Addition

$\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}$
Subtraction
$\frac{a}{c}-\frac{b}{c}=\frac{a-b}{c}$

Notes:

Adding or Subtracting with Unlike Denominators

Let a, b, c, and d be expressions with $c \neq 0$ and $d \neq 0$.

Addition

$\frac{a}{c}+\frac{b}{d}=\frac{a d}{c d}+\frac{b c}{c d}=\frac{a d+b c}{c d}$

Subtraction

$\frac{a}{c}-\frac{b}{d}=\frac{a d}{c d}-\frac{b c}{c d}=\frac{a d-b c}{c d}$

Notes:

Simplifying Complex Fractions

Method 1 If necessary, simplify the numerator and denominator by writing each as a single fraction.
Then divide by multiplying the numerator by the reciprocal of the denominator.
Method 2 Multiply the numerator and the denominator by the LCD of every fraction in the numerator and denominator. Then simplify.

Notes:

\qquad
\qquad

4.3 Practice (continued)

Worked-Out Examples

Example \#1

Find the sum or difference.

$$
\begin{aligned}
\frac{4 x^{2}}{2 x-1}-\frac{1}{2 x-1}=\frac{4 x^{2}-1}{2 x-1} & =\frac{(2 x-1)(2 x+1)}{2 x-1} \\
& =2 x+1, x \neq \frac{1}{2}
\end{aligned}
$$

Example \#2

Find the sum or difference.

$$
\begin{aligned}
\frac{12}{x^{2}+5 x-24}+\frac{3}{x-3} & =\frac{12}{(x+8)(x-3)}+\frac{3}{x-3} \\
& =\frac{12}{(x+8)(x-3)}+\frac{3(x+8)}{(x+8)(x-3)} \\
& =\frac{12+3(x+8)}{(x+8)(x-3)} \\
& =\frac{3(x+12)}{(x+8)(x-3)}
\end{aligned}
$$

Practice A

In Exercises 1-4, find the sum or difference.

1. $\frac{1}{x-1}-\frac{5}{x-1}$
2. $\frac{4 x}{3 x-5}+\frac{x}{3 x-5}$
3. $\frac{6 x}{x+4}+\frac{24}{x+4}$
4. $\frac{2 x^{2}}{x-7}-\frac{14 x}{x-7}$
\qquad
\qquad

4.3 Practice (continued)

In Exercises 5-7, find the least common multiple of the expressions.
5. $9 x^{3}, 3 x^{2}-21 x$
6. $x+5,2 x^{2}+11 x+5$
7. $x^{2}+5 x+6, x^{2}-3 x-18$

In Exercises 8-11, find the sum or the difference.
8. $\frac{3}{2 x}+\frac{11}{5 x}$
9. $\frac{15}{x-2}+\frac{3}{x+8}$
10. $\frac{3 x}{2 x+1}+\frac{10}{2 x^{2}-5 x-3}$
11. $\frac{x}{x-7}-\frac{2}{x+1}-\frac{8 x}{x^{2}-6 x-7}$

In Exercises 12 and 13, simplify the complex fraction.
12. $\frac{\frac{x}{10}-3}{5+\frac{1}{x}}$
13. $\frac{\frac{12}{x^{2}-7 x-44}}{\frac{2}{x-11}+\frac{1}{x+4}}$
\qquad

Practice B

In Exercises 1-3, find the sum or difference.

1. $\frac{x}{25 x^{2}}-\frac{5}{25 x^{2}}$
2. $\frac{2 x^{2}}{x+6}+\frac{8 x}{x+6}$
3. $\frac{3 x}{x-4}-\frac{12}{x-4}$

In Exercises 4-7, find the least common multiple of the expressions.
4. $36 x^{2}, 9 x^{2}-18 x$
5. $x^{2}-100, x-10$
6. $25 x^{2}-4,3 x^{2}-10 x-8$
7. $x^{2}+7 x-18, x+9$
8. Describe and correct the error in finding and simplifying the sum.

$$
X \frac{4}{7 x}+\frac{5}{x^{3}}=\frac{4\left(x^{3}\right)}{7 x\left(x^{3}\right)}+\frac{5(7 x)}{x^{3}(7 x)}=\frac{4 x^{3}+35 x}{7 x^{4}}
$$

In Exercises 9-12, find the sum or difference.
9. $\frac{7}{x-5}+\frac{4 x}{x+1}$
10. $\frac{7}{x^{2}-5 x-24}+\frac{3}{x-8}$
11. $\frac{x^{2}-3}{x^{2}-6 x-16}-\frac{x+5}{x+2}$
12. $\frac{x-2}{x-3}+\frac{3}{x}+\frac{6 x}{2 x+1}$

In Exercises 13 and 14, tell whether the statement is always, sometimes, or never true. Explain.
13. The LCD of two rational functions is one of the denominators when the other denominator is a factor.
14. The LCD of two rational functions will have a degree equal to that of the denominator with the higher degree.

In Exercises 15-18, rewrite the function in the form $g(x)=\frac{a}{x-h}+k$.
Graph the function. Describe the graph of g as a transformation of the graph
of $f(x)=\frac{a}{x}$.
15. $g(x)=\frac{5 x+3}{x+4}$
16. $g(x)=\frac{9 x}{x+12}$
17. $g(x)=\frac{5 x-4}{x}$
18. $g(x)=\frac{8 x+13}{x-6}$

