4.3

Adding and Subtracting Rational Expressions For use with Exploration 4.3

Essential Question How can you determine the domain of the sum or difference of two rational expressions?

York with a partner. Find the sum or d atch the sum or difference with its dom	ifference of the two rational expressions. Then ain. Explain your reasoning.
Sum or Difference	Domain
a. $\frac{1}{x-1} + \frac{3}{x-1} =$	A. all real numbers except -2
b. $\frac{1}{x-1} + \frac{1}{x} =$	B. all real numbers except -1 and 1
c. $\frac{1}{x-2} + \frac{1}{2-x} =$	C. all real numbers except 1
d. $\frac{1}{x-1} + \frac{-1}{x+1} =$	D. all real numbers except 0
e. $\frac{x}{x+2} - \frac{x+1}{2+x} =$	E. all real numbers except -2 and 1
f. $\frac{x}{x-2} - \frac{x+1}{x} =$	F. all real numbers except 0 and 1
g. $\frac{x}{x+2} - \frac{x}{x-1} =$	G. all real numbers except 2
h. $\frac{x+2}{x} - \frac{x+1}{x} =$	H. all real numbers except 0 and 2

4.3 Adding and Subtracting Rational Expressions (continued)

EXPLORATION: Writing a Sum or Difference

Work with a partner. Write a sum or difference of rational expressions that has the given domain. Justify your answer.

a. all real numbers except -1

b. all real numbers except -1 and 3

c. all real numbers except -1, 0, and 3

Communicate Your Answer

- **3.** How can you determine the domain of the sum or difference of two rational expressions?
- **4.** Your friend found a sum as follows. Describe and correct the error(s).

$$\frac{x}{x+4} + \frac{3}{x-4} = \frac{x+3}{2x}$$

Name

Core Concepts

Adding or Subtracting with Like Denominators

Let a, b, and c be expressions with $c \neq 0$.

Addition		Subtraction		
$\frac{a}{a} + \frac{b}{a} = \frac{a}{a}$	+b	<u>a</u>	$\frac{b}{-} =$	$\underline{a-b}$
c c	С	С	С	С

Notes:

Adding or Subtracting with Unlike Denominators

Let *a*, *b*, *c*, and *d* be expressions with $c \neq 0$ and $d \neq 0$.

AdditionSubtraction $\frac{a}{c} + \frac{b}{d} = \frac{ad}{cd} + \frac{bc}{cd} = \frac{ad + bc}{cd}$ $\frac{a}{c} - \frac{b}{d} = \frac{ad}{cd} - \frac{bc}{cd} = \frac{ad - bc}{cd}$

Notes:

Simplifying Complex Fractions

- **Method 1** If necessary, simplify the numerator and denominator by writing each as a single fraction. Then divide by multiplying the numerator by the reciprocal of the denominator.
- **Method 2** Multiply the numerator and the denominator by the LCD of *every* fraction in the numerator and denominator. Then simplify.

Notes:

4.3 Practice (continued)

Worked-Out Examples

Example #1

Find the sum or difference.

$$\frac{4x^2}{2x-1} - \frac{1}{2x-1} = \frac{4x^2-1}{2x-1} = \frac{(2x-1)(2x+1)}{2x-1}$$
$$= 2x+1, x \neq \frac{1}{2}$$

Example #2

Find the sum or difference.

$$\frac{12}{x^2 + 5x - 24} + \frac{3}{x - 3} = \frac{12}{(x + 8)(x - 3)} + \frac{3}{x - 3}$$
$$= \frac{12}{(x + 8)(x - 3)} + \frac{3(x + 8)}{(x + 8)(x - 3)}$$
$$= \frac{12 + 3(x + 8)}{(x + 8)(x - 3)}$$
$$= \frac{3(x + 12)}{(x + 8)(x - 3)}$$

Practice A

In Exercises 1–4, find the sum or difference.

1.
$$\frac{1}{x-1} - \frac{5}{x-1}$$
 2. $\frac{4x}{3x-5} + \frac{x}{3x-5}$

3.
$$\frac{6x}{x+4} + \frac{24}{x+4}$$
 4. $\frac{2x^2}{x-7} - \frac{14x}{x-7}$

Copyright © Big Ideas Learning, LLC All rights reserved.

Date_____

4.3 **Practice** (continued)

In Exercises 5–7, find the least common multiple of the expressions.

5.
$$9x^3, 3x^2 - 21x$$

6. $x + 5, 2x^2 + 11x + 5$
7. $x^2 + 5x + 6, x^2 - 3x - 18$

In Exercises 8–11, find the sum or the difference.

8.
$$\frac{3}{2x} + \frac{11}{5x}$$
 9. $\frac{15}{x-2} + \frac{3}{x+8}$

10.
$$\frac{3x}{2x+1} + \frac{10}{2x^2 - 5x - 3}$$
 11. $\frac{x}{x-7} - \frac{2}{x+1} - \frac{8x}{x^2 - 6x - 7}$

In Exercises 12 and 13, simplify the complex fraction.

12.
$$\frac{\frac{x}{10} - 3}{5 + \frac{1}{x}}$$
 13. $\frac{\frac{12}{x^2 - 7x - 44}}{\frac{2}{x - 11} + \frac{1}{x + 4}}$

Practice B

In Exercises 1–3, find the sum or difference.

1. $\frac{x}{25x^2} - \frac{5}{25x^2}$ **2.** $\frac{2x^2}{x+6} + \frac{8x}{x+6}$ **3.** $\frac{3x}{x-4} - \frac{12}{x-4}$

In Exercises 4–7, find the least common multiple of the expressions.

- **4.** $36x^2$, $9x^2 18x$ **5.** $x^2 100$, x 10
- **6.** $25x^2 4$, $3x^2 10x 8$ **7.** $x^2 + 7x - 18$, x + 9
- 8. Describe and correct the error in finding and simplifying the sum.

$$X \quad \frac{4}{7x} + \frac{5}{x^3} = \frac{4(x^3)}{7x(x^3)} + \frac{5(7x)}{x^3(7x)} = \frac{4x^3 + 35x}{7x^4}$$

In Exercises 9–12, find the sum or difference.

9.
$$\frac{7}{x-5} + \frac{4x}{x+1}$$

10. $\frac{7}{x^2-5x-24} + \frac{3}{x-8}$
11. $\frac{x^2-3}{x^2-6x-16} - \frac{x+5}{x+2}$
12. $\frac{x-2}{x-3} + \frac{3}{x} + \frac{6x}{2x+1}$

In Exercises 13 and 14, tell whether the statement is *always*, *sometimes*, or *never* true. Explain.

- **13.** The LCD of two rational functions is one of the denominators when the other denominator is a factor.
- **14.** The LCD of two rational functions will have a degree equal to that of the denominator with the higher degree.

In Exercises 15–18, rewrite the function in the form $g(x) = \frac{a}{x - h} + k$.

Graph the function. Describe the graph of g as a transformation of the graph of $f(x) = \frac{a}{x}$.

15.
$$g(x) = \frac{5x+3}{x+4}$$
 16. $g(x) = \frac{9x}{x+12}$

17.
$$g(x) = \frac{5x - 4}{x}$$
 18. $g(x) = \frac{8x + 13}{x - 6}$