CHAPTER 5

Trigonometric Ratios and Functions

5.1 Right Triangle Trigonometry	165
5.2 Angles and Radian Measure	171
5.3 Trigonometric Functions of Any Angle	177
5.4 Graphing Sine and Cosine Functions	185
5.5 Graphing Other Trigonometric Functions	191
5.6 Modeling with Trigonometric Functions	199

10 m

Chapter 5 Maintaining Mathematical Proficiency

Graph the function.

1. $f(x) = (x + 3)(x - 2)^2$

2.
$$f(x) = \frac{1}{2}(x+1)(x-4)^2$$

3.
$$f(x) = \frac{1}{4}(x+2)(x-1)(x-3)$$

Find the missing side length of the triangle.

Name

1

5.1

Right Triangle Trigonometry

For use with Exploration 5.1

Essential Question How can you find a trigonometric function of an acute angle θ ?

Consider one of the acute angles θ of a right triangle. Ratios of a right triangle's side lengths are used to define the six *trigonometric functions*, as shown.

EXPLORATION: Trigonometric Functions of Special Angles

Work with a partner. Find the exact values of the sine, cosine, and tangent functions for the angles 30° , 45° , and 60° in the right triangles shown.

2

5.1 Right Triangle Trigonometry (continued)

EXPLORATION: Exploring Trigonometric Identities

Work with a partner.

Use the definitions of the trigonometric functions to explain why each *trigonometric identity* is true.

a.
$$\sin \theta = \cos(90^\circ - \theta)$$
 b. $\cos \theta = \sin(90^\circ - \theta)$

c.
$$\sin \theta = \frac{1}{\csc \theta}$$
 d. $\tan \theta = \frac{1}{\cot \theta}$

Use the definitions of the trigonometric functions to complete each trigonometric identity.

e.
$$(\sin \theta)^2 + (\cos \theta)^2 =$$
 f. $(\sec \theta)^2 - (\tan \theta)^2 =$

Communicate Your Answer

- **3.** How can you find a trigonometric function of an acute angle θ ?
- **4.** Use a calculator to find the lengths *x* and *y* of the legs of the right triangle shown.

Date

Core Concepts

Right Triangle Definitions of Trigonometric Functions

Let θ be an acute angle of a right triangle. The six trigonometric functions of θ are defined as shown.

 $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} \quad \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} \quad \tan \theta = \frac{\text{opposite}}{\text{adjacent}}$ $\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}} \quad \sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}} \quad \cot \theta = \frac{\text{adjacent}}{\text{opposite}}$

The abbreviations *opp.*, *adj.*, and *hyp.* are often used to represent the side lengths of the right triangle. Note that the ratios in the second row are reciprocals of the ratios in the first row.

$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

Notes:

Trigonometric Values for Special Angles

The table gives the values of the six trigonometric functions for the angles 30°, 45°, and 60°. You can obtain these values from the triangles shown.

θ	sin θ	cos θ	tan θ	csc θ	sec $ heta$	cot <i>θ</i>
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

5.1 Practice (continued)

Notes:

Worked-Out Examples

Example #1

Evaluate the six trigonometric functions of the angle θ .

From the Pythagorean Theorem, the length of the hypotenuse is

hyp. = $\sqrt{9^2 + 12^2}$ = $\sqrt{225}$ = 15.

Using adj. = 9, opp. = 12, and hyp. = 15, the six trigonometric functions of θ are:

$\sin \theta = \frac{\text{opp.}}{\text{hyp.}} = \frac{12}{15} = \frac{4}{5}$	$\cos \theta = \frac{\text{adj.}}{\text{hyp.}} = \frac{9}{15} = \frac{3}{5}$
$\tan \theta = \frac{\text{opp.}}{\text{adj.}} = \frac{12}{9} = \frac{4}{3}$	$\csc \ \theta = \frac{\text{hyp.}}{\text{opp.}} = \frac{15}{12} = \frac{5}{4}$
$\sec \theta = \frac{\text{hyp.}}{\text{adj.}} = \frac{15}{9} = \frac{5}{3}$	$\cot \theta = \frac{\text{adj.}}{\text{opp.}} = \frac{9}{12} = \frac{3}{4}$

Example #2

Let θ be an acute angle of a right triangle. Evaluate the other five trigonometric functions of θ .

- $\tan\theta=\frac{7}{6}$
- **Step 1** Draw a right triangle with acute angle θ such that the leg adjacent θ has length 6 and the leg opposite θ has length 7.
- **Step 2** Find the length of the hypothenuse. By the Pythagorean Theorem, the length of the hypothenuse is

hyp. = $\sqrt{6^2 + 7^2} = \sqrt{85}$.

Copyright © Big Ideas Learning, LLC All rights reserved.

Date

5.1 **Practice** (continued)

Step 3 Find the values of the remaining five trigonometric

functions. Because $\tan \theta = \frac{7}{6}$, $\cot \theta = \frac{6}{7}$. The other values are:

$$\sin \theta = \frac{\text{opp.}}{\text{hyp.}} = \frac{7}{\sqrt{85}} = \frac{7\sqrt{85}}{85}$$
$$\cos \theta = \frac{\text{adj.}}{\text{hyp.}} = \frac{6}{\sqrt{85}} = \frac{6\sqrt{85}}{85}$$
$$\csc \theta = \frac{\text{hyp.}}{\text{opp}} = \frac{\sqrt{85}}{7}$$
$$\sec \theta = \frac{\text{hyp.}}{\text{adj.}} = \frac{\sqrt{85}}{6}$$

Practice A

In Exercises 1 and 2, evaluate the six trigonometric functions of the angle θ .

In Exercises 3 and 4, let θ be an acute angle of a right triangle. Evaluate the other five trigonometric functions of θ .

3.
$$\tan \theta = 1$$
 4. $\sin \theta = \frac{3}{19}$

In Exercises 5 and 6, find the value of *x* for the right triangle.

Practice B

Name

In Exercises 1 and 2, evaluate the six trigonometric functions of the angle θ .

3. Evaluate the six trigonometric functions of the angle $90^{\circ} - \theta$ in Exercise 1. Describe the relationships you notice.

In Exercises 4–6, let θ be an acute angle of a right triangle. Evaluate the other five trigonometric functions of θ .

- **4.** $\cos \theta = \frac{5}{11}$ **5.** $\cot \theta = \frac{7}{8}$ **6.** $\sec \theta = \frac{11}{9}$
- 7. Describe and correct the error in finding $\csc \theta$ of the triangle below.

In Exercises 8 and 9, find the value of x for the right triangle.

10. A cable is attached to the top of a pole and mounted to the ground 3 feet from the base of the pole. The angle of elevation from the mounting to the top of the pole is 78°. Estimate the height of the pole. Round your answer to the nearest tenth.