CHAPTER 5

Trigonometric Ratios and Functions

\qquad
\qquad

Chapter 5
 Maintaining Mathematical Proficiency

Graph the function.

1. $f(x)=(x+3)(x-2)^{2}$
2. $f(x)=\frac{1}{2}(x+1)(x-4)^{2}$
3. $f(x)=\frac{1}{4}(x+2)(x-1)(x-3)$

Find the missing side length of the triangle.
4.

5.

6.

7.

\qquad

5.1 Right Triangle Trigonometry
 For use with Exploration 5.1

Essential Question How can you find a trigonometric function of an

 acute angle θ ?Consider one of the acute angles θ of a right triangle. Ratios of a right triangle's side lengths are used to define the six trigonometric functions, as shown.

Sine $\sin \theta=\frac{\text { opp. }}{\text { hyp. }} \quad$ Cosine $\quad \cos \theta=\frac{\text { adj. }}{\text { hyp. }}$

Tangent $\tan \theta=\frac{\text { opp. }}{\text { adj. Cotangent }} \cot \theta=\frac{\text { adj. }}{\text { opp. }}$

1 EXPLORATION: Trigonometric Functions of Special Angles

Work with a partner. Find the exact values of the sine, cosine, and tangent functions for the angles $30^{\circ}, 45^{\circ}$, and 60° in the right triangles shown.

\qquad

5.1 Right Triangle Trigonometry (continued)

2 EXPLORATION: Exploring Trigonometric Identities
Work with a partner.
Use the definitions of the trigonometric functions to explain why each trigonometric identity is true.
a. $\sin \theta=\cos \left(90^{\circ}-\theta\right)$
b. $\cos \theta=\sin \left(90^{\circ}-\theta\right)$
c. $\sin \theta=\frac{1}{\csc \theta}$
d. $\tan \theta=\frac{1}{\cot \theta}$

Use the definitions of the trigonometric functions to complete each trigonometric identity.
e. $(\sin \theta)^{2}+(\cos \theta)^{2}=$ \qquad f. $(\sec \theta)^{2}-(\tan \theta)^{2}=$ \qquad

Communicate Your Answer

3. How can you find a trigonometric function of an acute angle θ ?
4. Use a calculator to find the lengths x and y of the legs of the right triangle shown.

\qquad

5.1

Practice
For use after Lesson 5.1

Core Concepts

Right Triangle Definitions of Trigonometric Functions

Let θ be an acute angle of a right triangle. The six trigonometric functions of θ are defined as shown.

$$
\begin{array}{lll}
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} & \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} & \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
\csc \theta=\frac{\text { hypotenuse }}{\text { opposite }} & \sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }} & \cot \theta=\frac{\text { adjacent }}{\text { opposite }}
\end{array}
$$

The abbreviations opp., adj., and hyp. are often used to represent the side lengths of the right triangle. Note that the ratios in the second row are reciprocals of the ratios in the first row.
$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$

Notes:

Trigonometric Values for Special Angles

The table gives the values of the six trigonometric functions for the angles $30^{\circ}, 45^{\circ}$, and 60°. You can obtain these values from the triangles shown.

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c s c }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { s e c }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o t }} \boldsymbol{\theta}$
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

\qquad
\qquad

5.1 Practice (continued)

Notes:

Worked-Out Examples

Example \#1

Evaluate the six trigonometric functions of the angle θ.

From the Pythagorean Theorem, the length of the hypotenuse is

$$
\begin{aligned}
\text { hyp. } & =\sqrt{9^{2}+12^{2}} \\
& =\sqrt{225} \\
& =15 .
\end{aligned}
$$

Using adj. $=9$, opp. $=12$, and hyp. $=15$, the six trigonometric functions of θ are:
$\sin \theta=\frac{\text { opp. }}{\text { hyp. }}=\frac{12}{15}=\frac{4}{5} \quad \cos \theta=\frac{\text { adj. }}{\text { hyp. }}=\frac{9}{15}=\frac{3}{5}$
$\tan \theta=\frac{\text { opp. }}{\text { adj. }}=\frac{12}{9}=\frac{4}{3} \quad \csc \theta=\frac{\text { hyp. }}{\text { opp. }}=\frac{15}{12}=\frac{5}{4}$
$\sec \theta=\frac{\text { hyp. }}{\text { adj. }}=\frac{15}{9}=\frac{5}{3} \quad \cot \theta=\frac{\text { adj. }}{\text { opp. }}=\frac{9}{12}=\frac{3}{4}$

Example \#2

Let θ be an acute angle of a right triangle. Evaluate the other five trigonometric functions of θ.
$\tan \theta=\frac{7}{6}$

Step 1 Draw a right triangle with acute angle θ such that the leg adjacent θ has length 6 and the leg opposite θ has length 7.

Step 2 Find the length of the hypothenuse. By the Pythagorean Theorem, the length of the hypothenuse is hyp. $=\sqrt{6^{2}+7^{2}}=\sqrt{85}$.

\qquad

5.1 Practice (continued)

Step 3 Find the values of the remaining five trigonometric functions. Because $\tan \theta=\frac{7}{6}, \cot \theta=\frac{6}{7}$. The other values are:
$\sin \theta=\frac{\text { opp. }}{\text { hyp. }}=\frac{7}{\sqrt{85}}=\frac{7 \sqrt{85}}{85}$
$\cos \theta=\frac{\text { adj. }}{\text { hyp. }}=\frac{6}{\sqrt{85}}=\frac{6 \sqrt{85}}{85}$
$\csc \theta=\frac{\text { hyp. }}{\text { opp }}=\frac{\sqrt{85}}{7}$
$\sec \theta=\frac{\text { hyp. }}{\text { adj. }}=\frac{\sqrt{85}}{6}$

Practice A

In Exercises 1 and 2, evaluate the six trigonometric functions of the angle $\boldsymbol{\theta}$.
1.

2.

In Exercises 3 and 4, let θ be an acute angle of a right triangle. Evaluate the other five trigonometric functions of θ.
3. $\tan \theta=1$
4. $\sin \theta=\frac{3}{19}$

In Exercises 5 and 6, find the value of x for the right triangle.
5.

6.

\qquad
\qquad

Practice B

In Exercises 1 and 2, evaluate the six trigonometric functions of the angle $\boldsymbol{\theta}$.

1.

2.

3. Evaluate the six trigonometric functions of the angle $90^{\circ}-\theta$ in Exercise 1 . Describe the relationships you notice.

In Exercises 4-6, let θ be an acute angle of a right triangle. Evaluate the other five trigonometric functions of θ.
4. $\cos \theta=\frac{5}{11}$
5. $\cot \theta=\frac{7}{8}$
6. $\sec \theta=\frac{11}{9}$
7. Describe and correct the error in finding $\csc \theta$ of the triangle below.

$$
X \sec \theta=\frac{\text { adj. }}{\text { hyp. }}=\frac{9}{15}=\frac{3}{5}
$$

In Exercises 8 and 9, find the value of \boldsymbol{x} for the right triangle.
8.

9.

10. A cable is attached to the top of a pole and mounted to the ground 3 feet from the base of the pole. The angle of elevation from the mounting to the top of the pole is 78°. Estimate the height of the pole. Round your answer to the nearest tenth.

