5.3

(x, y)

x

Trigonometric Functions of Any Angle For use with Exploration 5.3

Essential Question How can you use the unit circle to define the trigonometric functions of any angle?

Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$. The six trigonometric functions of θ are defined as shown.

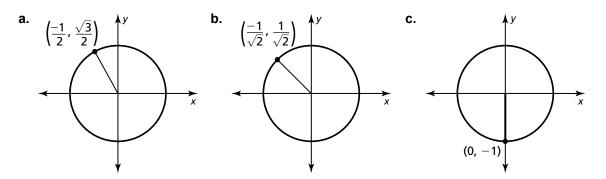
 $\sin \theta = \frac{y}{r} \qquad \qquad \csc \theta = \frac{r}{y}, y \neq 0$

$$\cos \theta = \frac{x}{r}$$
 $\sec \theta = \frac{r}{x}, x \neq 0$

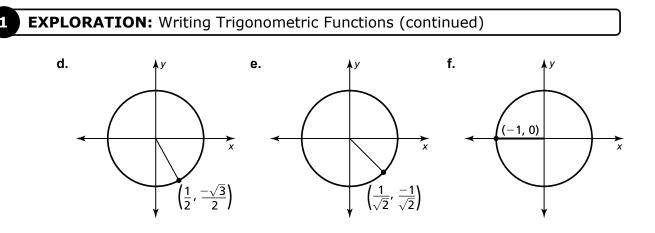
$$\tan \theta = \frac{y}{x}, x \neq 0$$
 $\cot \theta = \frac{x}{y}, y \neq 0$

EXPLORATION: Writing Trigonometric Functions

Work with a partner. Find the sine, cosine, and tangent of the angle θ in standard position whose terminal side intersects the unit circle at the point (*x*, *y*) shown.



5.3 Trigonometric Functions of Any Angle (continued)



Communicate Your Answer

2. How can you use the unit circle to define the trigonometric functions of any angle?

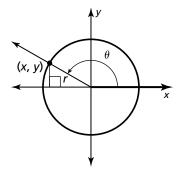
- 3. For which angles are each function undefined? Explain your reasoning.
 - **a.** tangent
 - **b.** cotangent
 - **c.** secant
 - **d.** cosecant

Core Concepts

General Definitions of Trigonometric Functions

Let θ be an angle in standard position, and let (x, y) be the point where the terminal side of θ intersects the circle $x^2 + y^2 = r^2$. The six trigonometric functions of θ are defined as shown.

$\sin\theta = \frac{y}{r}$	$\csc\theta=\frac{r}{y}, y\neq 0$
$\cos \theta = \frac{x}{r}$	$\sec \theta = \frac{r}{x}, x \neq 0$
$\tan\theta = \frac{y}{x}, x \neq 0$	$\cot \theta = \frac{x}{y}, y \neq 0$



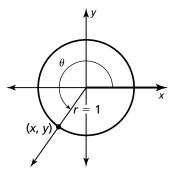
These functions are sometimes called *circular functions*.

The Unit Circle

The circle $x^2 + y^2 = 1$, which has center (0, 0) and radius 1, is called the **unit circle**. The values of sin θ and cos θ are simply the *y*-coordinate and *x*-coordinate, respectively, of the point where the terminal side of θ intersects the unit circle.

 $\sin \theta = \frac{y}{r} = \frac{y}{1} = y$ $\cos \theta = \frac{x}{r} = \frac{x}{1} = x$

Notes:

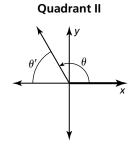


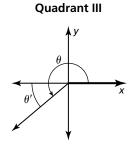
5.3 Practice (continued)

Reference Angle Relationships

Let θ be an angle in standard position. The **reference angle** for θ is the acute angle θ' formed by the terminal side of θ and the *x*-axis. The relationship between θ and θ' is shown below for nonquadrantal

angles θ such that $90^\circ < \theta < 360^\circ$ or, in radians, $\frac{\pi}{2} < \theta < 2\pi$.

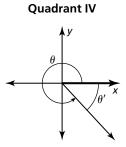




Degrees: $\theta' = \theta - 180^{\circ}$

Degrees: $\theta' = 180^{\circ} - \theta$	
Radians: $\theta' = \pi - \theta$	

Radians: $\theta' = \theta - \pi$



Degrees: $\theta' = 360^{\circ} - \theta$ Radians: $\theta' = 2\pi - \theta$

Notes:

Evaluating Trigonometric Functions

Use these steps to evaluate a trigonometric function for any angle θ :

- **Step 1** Find the reference angle θ' .
- **Step 2** Evaluate the trigonometric function for θ' .
- **Step 3** Determine the sign of the trigonometric function value from the quadrant in which θ lies.

Notes:

Signs of Function Values

Quadrant II	y Quadrant I
$\sin \theta$, $\csc \theta$: +	$\sin \theta$, $\csc \theta$: +
$\cos \theta$, $\sec \theta$: –	$\cos \theta$, $\sec \theta$: +
$\tan \theta$, $\cot \theta$: –	$\tan \theta$, $\cot \theta$: +
Quadrant III $\sin \theta$, $\csc \theta$: –	Quadrant IV \overline{x} sin θ , csc θ : –

5.3 Practice (continued)

Worked-Out Examples

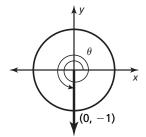
Example #1

Use the unit circle to evaluate the six trigonometric functions of θ .

$$\theta = \frac{7\pi}{2}$$

Draw a unit circle with the angle $\theta = \frac{7\pi}{2}$ in standard position.

Identify the point where the terminal side of θ intersects the unit circle. The terminal side of θ intersects the unit circle at (0, -1).

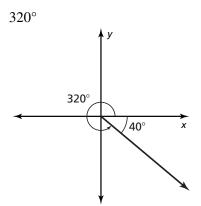


Find the values of the six trigonometric functions. Let x = 0 and y = -1 to evaluate the trigonometric functions.

$\sin \theta = \frac{y}{r} = \frac{-1}{1} = -1$	$\csc \ \theta = \frac{r}{y} = \frac{1}{-1} = -1$
$\cos\theta = \frac{x}{r} = \frac{0}{1} = 0$	sec $\theta = \frac{r}{x} = \frac{1}{0}$ undefined
$\tan \theta = \frac{y}{x} = \frac{-1}{\sqrt{0}}$ undefined	$\cot \theta = \frac{x}{y} = \frac{0}{-1} = 0$

Example #2

Sketch the angle. Then find its reference angle.

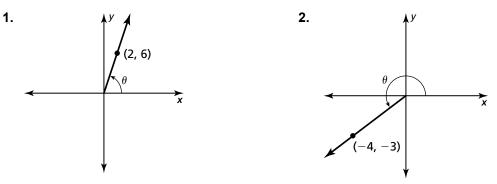


The terminal side lies in Quadrant IV. So, the reference angle is $360^{\circ} - 320^{\circ} = 40^{\circ}$.

5.3 Practice (continued)

Practice A

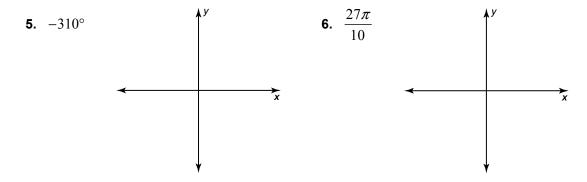
In Exercises 1 and 2, evaluate the six trigonometric functions of θ .



In Exercises 3 and 4, use the unit circle to evaluate the six trigonometric functions of θ .

3. $\theta = -90^{\circ}$ **4.** $\theta = 4\pi$

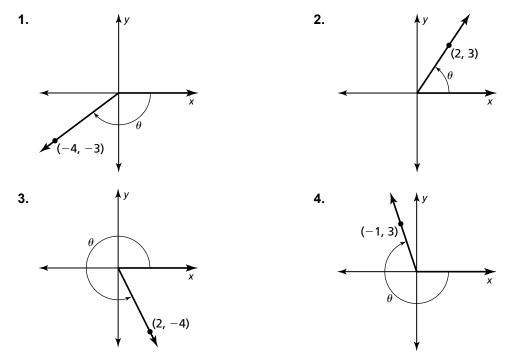
In Exercises 5 and 6, sketch the angle. Then find its reference angle.



7. Evaluate the function $\csc 150^{\circ}$ without using a calculator.

Date _____

Practice B



In Exercises 1–4, evaluate the six trigonometric functions of θ .

In Exercises 5–7, use the unit circle to evaluate the six trigonometric functions of θ .

5.
$$5\pi$$
 6. -720° **7.** $-\frac{5\pi}{2}$

In Exercises 8–13, find the angle's reference angle.

8. -250° 9. 110° 10. -310° 11. $\frac{13\pi}{4}$ 12. $\frac{11\pi}{6}$ 13. $-\frac{13\pi}{3}$

In Exercises 14–16, evaluate the function without using a calculator.

14. cot 240° **15.** sin 315° **16.** sec
$$\left(-\frac{5\pi}{6}\right)$$

17. The horizontal distance d (in feet) traveled by a projectile launched at an angle θ and with an initial speed v (in feet per second) is given by $d = \frac{v^2}{32} \sin 2\theta$. To win a shot-put competition, your last throw must travel a horizontal distance of at least 15 feet. You release the shot put at a 45° angle with an initial speed of 22 feet per second. Do you win the competition? Justify your answer.