5.4

Graphing Sine and Cosine Functions For use with Exploration 5.4

Essential Question What are the characteristics of the graphs of the sine and cosine functions?

EXPLORATION: Graphing the Sine Function

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

x	-2π	$-\frac{7\pi}{4}$	$-\frac{3\pi}{2}$	$-\frac{5\pi}{4}$	$-\pi$	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0
<i>y</i> = sin <i>x</i>									
x	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π	$\frac{9\pi}{4}$
$y = \sin x$									

a. Complete the table for $y = \sin x$, where x is an angle measure in radians.

b. Plot the points (x, y) from part (a). Draw a smooth curve through the points to sketch the graph of $y = \sin x$.

c. Use the graph to identify the *x*-intercepts, the *x*-values where the local maximums and minimums occur, and the intervals for which the function is increasing or decreasing over $-2\pi \le x \le 2\pi$. Is the sine function *even*, *odd*, or *neither*?

5.4 Graphing Sine and Cosine Functions (continued)

2 **EXPLORATION:** Graphing the Cosine Function

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner.

a. Complete the table for $y = \cos x$ using the same values of x as those used in Exploration 1.

x	-2π	$-\frac{7\pi}{4}$	$-\frac{3\pi}{2}$	$-\frac{5\pi}{4}$	$-\pi$	$-\frac{3\pi}{4}$	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0
$y = \cos x$									
x	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π	$\frac{9\pi}{4}$
$y = \cos x$									

b. Plot the points (x, y) from part (a) and sketch the graph of $y = \cos x$

c. Use the graph to identify the *x*-intercepts, the *x*-values where the local maximums and minimums occur, and the intervals for which the function is increasing or decreasing over $-2\pi \le x \le 2\pi$. Is the cosine function *even*, *odd*, or *neither*?

Communicate Your Answer

- 3. What are the characteristics of the graphs of the sine and cosine functions?
- **4.** Describe the end behavior of the graph of $y = \sin x$.

Core Concepts

Characteristics of $y = \sin x$ and $y = \cos x$

- The domain of each function is all real numbers.
- The range of each function is $-1 \le y \le 1$. So, the minimum value of each function is -1 and the maximum value is 1.
- The **amplitude** of the graph of each function is one-half of the difference of the maximum value and the minimum value, or $\frac{1}{2} \left[1 (-1) \right] = 1$.
- Each function is **periodic**, which means that its graph has a repeating pattern. The shortest repeating portion of the graph is called a **cycle**. The horizontal length of each cycle is called the **period**. The graph of each function has a period of 2π .
- The x-intercepts for $y = \sin x$ occur when $x = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$

• The x-intercepts for $y = \cos x$ occur when $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \pm \frac{7\pi}{2}, \dots$

Amplitude and Period

The amplitude and period of the graphs of $y = a \sin bx$ and $y = a \cos bx$, where a and b are nonzero real numbers, are as follows:

Amplitude =
$$|a|$$
 Period = $\frac{2\pi}{|b|}$

Notes:

```
Graphing y = a \sin b(x - h) + k and y = a \cos b(x - h) + k
```

To graph $y = a \sin b(x - h) + k$ or $y = a \cos b(x - h) + k$ where a > 0 and b > 0, follow these steps:

Step 1 Identify the amplitude *a*, the period $\frac{2\pi}{b}$, the horizontal shift *h*, and the vertical shift *k* of the graph.

Step 2 Draw the horizontal line y = k, called the **midline** of the graph.

5.4 Practice (continued)

Step 3 Find the five key points by translating the key points of $y = a \sin bx$ or $y = a \cos bx$ horizontally *h* units and vertically *k* units.

Step 4 Draw the graph through the five translated key points.

Notes:

Worked-Out Examples

Example #1

Identify the amplitude and period of the function. Then graph the function and describe the graph of g as a transformation of the graph of its parent function.

 $g(x) = \cos 4x$

The function is of the form $g(x) = a \cos bx$, where a = 1and b = 4. So, the amplitude is a = 1 and the period is $\frac{2\pi}{b} = \frac{2\pi}{4} = \frac{\pi}{2}$. Intercepts: $\left(\frac{\pi}{8}, 0\right); \left(\frac{3\pi}{8}, 0\right)$ Maximum: $(0, 1); \left(\frac{\pi}{2}, 1\right)$ Minimum: $\left(\frac{\pi}{4}, -1\right)$

The graph of *g* is a horizontal shrink by a factor of $\frac{1}{4}$ of the graph of $f(x) = \cos x$.

Date

Example #2

Identify the amplitude and period of the function. Then graph the function and describe the graph of g as a transformation of the graph of its parent function.

 $g(x) = \sin 2\pi x$

The function is of the form $g(x) = a \sin bx$, where a = 1and $b = 2\pi$. So, the amplitude is a = 1 and the period is $\frac{2\pi}{b} = \frac{2\pi}{2\pi} = 1$.

Intercepts: (0, 0); (0.5, 0); (1, 0)

Maximum: (0.25, 1)

Minimum: (0.75, -1)

The graph of g is a horizontal shrink by a factor of $\frac{1}{2\pi}$ of the graph of $f(x) = \sin x$.

Name_

5.4 Practice (continued)

Practice A

In Exercises 1–4, identify the amplitude and period of the function. Then graph the function and describe the graph of g as a transformation of the graph of its parent function.

1. $g(x) = \sin 2x$

3. $g(x) = 4 \sin 2\pi x$

In Exercises 5 and 6, graph the function.

5.
$$g(x) = \sin \frac{1}{2}(x - \pi) + 1$$

4.
$$g(x) = \frac{1}{2}\cos 3\pi x$$

$$g(x) = \cos\left(x + \frac{\pi}{2}\right) - 3$$

Practice B

In Exercises 1 and 2, identify the amplitude and period of the graph of the function.

In Exercises 3-6, identify the amplitude and period of the function. Then graph the function and describe the graph of g as a transformation of the graph of its parent function.

3. $g(x) = 4 \sin x$ **4.** $g(x) = \cos \pi x$

5.
$$g(x) = 5 \sin 4x$$

6. $g(x) = \frac{1}{4} \cos 2x$

7. Write an equation of the form $y = a \cos bx$, where a > 0 and b > 0, so that the graph has the given amplitude and period.

a.	amplitude: 1	b.	amplitude: 3
	period: 3		period: 4
c.	amplitude: 12	d.	amplitude: $\frac{1}{3}$
	period: 2π		period: π

In Exercises 8–11, graph the function.

8. $g(x) = \cos x + 3$ 9. $g(x) = 2 \sin x - 1$ 10. $g(x) = \sin \frac{1}{2}(x - \pi) - 2$ 11. $g(x) = \cos \frac{1}{2}(x + \pi) - 4$

In Exercises 12 and 13, write a rule for *g* that represents the indicated transformations of the graph of *f*.

- 12. $f(x) = \frac{1}{2} \cos 3x$; translation 2 units up, followed by a reflection in the line y = 2
- **13.** $f(x) = \frac{1}{3} \sin \pi x$; translation 3 units down, followed by a reflection in the line y = -3