5.5

Graphing Other Trigonometric Functions For use with Exploration 5.5

Essential Question What are the characteristics of the graph of the tangent function?

1

EXPLORATION: Graphing the Tangent Function

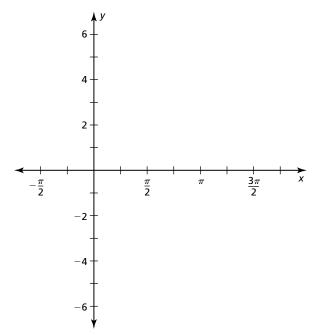
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

x	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
<i>y</i> = tan <i>x</i>									
x	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$
y = tan x									

a. Complete the table for $y = \tan x$, where x is an angle measure in radians.

b. The graph of $y = \tan x$ has vertical asymptotes at *x*-values where $\tan x$ is undefined. Plot the points (x, y) from part (a). Then use the asymptotes to sketch the graph of $y = \tan x$.



1

5.5 Graphing Other Trigonometric Functions (continued)

EXPLORATION: Graphing the Tangent Function (continued)

c. For the graph of $y = \tan x$, identify the asymptotes, the *x*-intercepts, and the intervals for which the function is increasing or decreasing

over
$$-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$$
. Is the tangent function *even*, *odd*, or *neither*?

Communicate Your Answer

2. What are the characteristics of the graph of the tangent function?

3. Describe the asymptotes of the graph of
$$y = \cot x$$
 on the interval $-\frac{\pi}{2} < x < \frac{3\pi}{2}$.

5.5 Practice For use after Lesson 5.5

Core Concepts

Characteristics of $y = \tan x$ and $y = \cot x$

The functions $y = \tan x$ and $y = \cot x$ have the following characteristics.

• The domain of $y = \tan x$ is all real numbers except odd multiples of $\frac{\pi}{2}$. At these

x-values, the graph has vertical asymptotes.

- The domain of $y = \cot x$ is all real numbers except multiples of π . At these *x*-values, the graph has vertical asymptotes.
- The range of each function is all real numbers. So, the functions do not have maximum or minimum values, and the graphs do not have an amplitude.
- The period of each graph is π .
- The *x*-intercepts for $y = \tan x$ occur when $x = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$
- The x-intercepts for $y = \cot x$ occur when $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \pm \frac{7\pi}{2}, \dots$

Notes:

Period and Vertical Asymptotes of $y = a \tan bx$ and $y = a \cot bx$

The period and vertical asymptotes of the graphs of $y = a \tan bx$ and $y = a \cot bx$, where *a* and *b* are nonzero real numbers, are as follows.

- The period of the graph of each function is $\frac{\pi}{|b|}$.
- The vertical asymptotes for $y = a \tan bx$ occur at odd multiples of $\frac{\pi}{2|b|}$.
- The vertical asymptotes for $y = a \cot bx$ occur at multiples of $\frac{\pi}{|b|}$.

Notes:

5.5 Practice (continued)

Characteristics of $y = \sec x$ and $y = \csc x$

The functions $y = \sec x$ and $y = \csc x$ have the following characteristics.

- The domain of $y = \sec x$ is all real numbers except odd multiples of $\frac{\pi}{2}$. At these *x*-values, the graph has vertical asymptotes.
- The domain of $y = \csc x$ is all real numbers except multiples of π . At these *x*-values, the graph has vertical asymptotes.
- The range of each function is $y \le -1$ and $y \ge 1$. So, the graphs do not have an amplitude.
- The period of each graph is 2π .

Notes:

Worked-Out Examples

Example #1

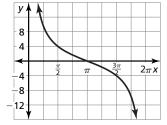
Graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

$$g(x) = 4\cot\frac{1}{2}x$$

The function is of the form $g(x) = a \cot bx$, where a = 4and $b = \frac{1}{2}$. So, the period is $\frac{\pi}{|b|} = \frac{\pi}{\frac{1}{2}} = 2\pi$. Intercept: $\left(\frac{\pi}{2b}, 0\right) = \left(\frac{\pi}{2\left(\frac{1}{2}\right)}, 0\right) = (\pi, 0)$ Asymptotes: x = 0; $x = \frac{\pi}{|b|} = \frac{\pi}{\frac{1}{2}}$, or $x = 2\pi$ Halfway points: $\left(\frac{\pi}{4b}, a\right) = \left(\frac{\pi}{4\left(\frac{1}{2}\right)}, 4\right) = \left(\frac{\pi}{2}, 4\right)$; $\left(\frac{3\pi}{4b}, -a\right) = \left(\frac{3\pi}{4\left(\frac{1}{2}\right)}, -4\right) = \left(\frac{3\pi}{2}, -4\right)$

Copyright © Big Ideas Learning, LLC All rights reserved.

5.5 Practice (continued)



The graph of *g* is a horizontal stretch by a factor of 2 and a vertical stretch by a factor of 4 of the graph of $f(x) = \cot x$.

Example #2

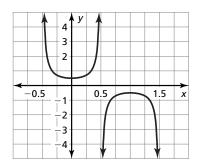
Graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

$$g(x) = \frac{1}{2} \sec \pi x$$

Step 1 Graph the function $y = \frac{1}{2} \cos \pi x$. The period is $\frac{2\pi}{\pi} = 2$. Step 2 Graph asymptotes of g. Because the asymptotes of

Step 2 Graph asymptotes of *g*. Because the asymptotes of *g* occur when $\frac{1}{2} \cos \pi x = 0$, graph $x = -\frac{1}{2}$, $x = \frac{1}{2}$, and $x = \frac{3}{2}$.

Step 3 Plot points on g, such as $\left(0, \frac{1}{2}\right)$ and $\left(1, -\frac{1}{2}\right)$. Then use the asymptotes to sketch the curve.



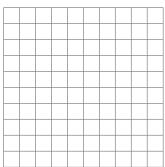
The graph of *g* is a horizontal shrink by a factor of $\frac{1}{\pi}$ and a vertical shrink by a factor of $\frac{1}{2}$ of the graph of $f(x) = \sec x$.

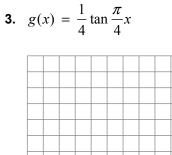
5.5 Practice (continued)

Practice A

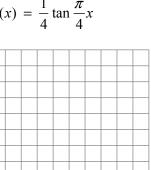
In Exercises 1–6, graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

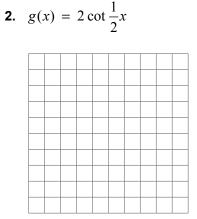
1. $g(x) = \tan 2x$





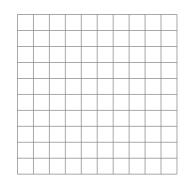
5. $g(x) = 2 \sec 2x$





4.
$$g(x) = \frac{1}{2} \cot 3x$$

6. $g(x) = \csc 2\pi x$



Copyright © Big Ideas Learning, LLC All rights reserved.

Practice B

In Exercises 1–4, graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

- 1. $g(x) = 2 \tan 4x$ 2. $g(x) = 3 \cot \frac{1}{2}x$

 3. $g(x) = \frac{1}{4} \tan 2\pi x$ 4. $g(x) = \frac{1}{3} \cot \pi x$
- 5. Describe and correct the error in describing the transformation of $f(x) = \tan x$ represented by $g(x) = 4 \tan \frac{1}{2}x$.

$$X$$
 A vertical stretch by a factor
of 4 and a horizontal shrink
by a factor of $\frac{1}{2}$

6. Use the given graph to graph each function.

In Exercises 7–10, graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

7. $g(x) = \frac{1}{3} \csc \pi x$ 8. $g(x) = \frac{1}{2} \sec 6x$ 9. $g(x) = \sec \frac{\pi}{2}x$ 10. $g(x) = \csc \frac{\pi}{3}x$