\qquad

5.5
 Graphing Other Trigonometric Functions
 For use with Exploration 5.5

Essential Question What are the characteristics of the graph of the tangent function?

1 EXPLORATION: Graphing the Tangent Function

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner.
a. Complete the table for $y=\tan x$, where x is an angle measure in radians.

\boldsymbol{x}	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\boldsymbol{y}=\boldsymbol{\operatorname { t a n } x}$									
\boldsymbol{x}	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$
$\boldsymbol{y = \operatorname { t a n } x}$									

b. The graph of $y=\tan x$ has vertical asymptotes at x-values where $\tan x$ is undefined. Plot the points (x, y) from part (a). Then use the asymptotes to sketch the graph of $y=\tan x$.

\qquad
5.5 Graphing Other Trigonometric Functions (continued)

1 EXPLORATION: Graphing the Tangent Function (continued)
c. For the graph of $y=\tan x$, identify the asymptotes, the x-intercepts, and the intervals for which the function is increasing or decreasing over $-\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$. Is the tangent function even, odd, or neither?

Communicate Your Answer

2. What are the characteristics of the graph of the tangent function?
3. Describe the asymptotes of the graph of $y=\cot x$ on the interval $-\frac{\pi}{2}<x<\frac{3 \pi}{2}$.
\qquad

5.5

Practice

For use after Lesson 5.5

Core Concepts

Characteristics of $\boldsymbol{y}=\boldsymbol{\operatorname { t a n }} \boldsymbol{x}$ and $\boldsymbol{y}=\boldsymbol{\operatorname { c o t }} \boldsymbol{x}$
The functions $y=\tan x$ and $y=\cot x$ have the following characteristics.

- The domain of $y=\tan x$ is all real numbers except odd multiples of $\frac{\pi}{2}$. At these x-values, the graph has vertical asymptotes.
- The domain of $y=\cot x$ is all real numbers except multiples of π. At these x-values, the graph has vertical asymptotes.
- The range of each function is all real numbers. So, the functions do not have maximum or minimum values, and the graphs do not have an amplitude.
- The period of each graph is π.
- The x-intercepts for $y=\tan x$ occur when $x=0, \pm \pi, \pm 2 \pi, \pm 3 \pi, \ldots$..
- The x-intercepts for $y=\cot x$ occur when $x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \pm \frac{7 \pi}{2}, \ldots$

Notes:

Period and Vertical Asymptotes of $y=a \tan b x$ and $y=a \cot b x$

The period and vertical asymptotes of the graphs of $y=a \tan b x$ and $y=a \cot b x$, where a and b are nonzero real numbers, are as follows.

- The period of the graph of each function is $\frac{\pi}{|b|}$.
- The vertical asymptotes for $y=a \tan b x$ occur at odd multiples of $\frac{\pi}{2|b|}$.
- The vertical asymptotes for $y=a \cot b x$ occur at multiples of $\frac{\pi}{|b|}$.

Notes:

\qquad
\qquad

5.5 Practice (continued)

Characteristics of $y=\sec x$ and $y=\csc x$

The functions $y=\sec x$ and $y=\csc x$ have the following characteristics.

- The domain of $y=\sec x$ is all real numbers except odd multiples of $\frac{\pi}{2}$. At these x-values, the graph has vertical asymptotes.
- The domain of $y=\csc x$ is all real numbers except multiples of π. At these x-values, the graph has vertical asymptotes.
- The range of each function is $y \leq-1$ and $y \geq 1$. So, the graphs do not have an amplitude.
- The period of each graph is 2π.

Notes:

Worked-Out Examples

Example \#1

Graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.
$g(x)=4 \cot \frac{1}{2} x$
The function is of the form $g(x)=a \cot b x$, where $a=4$
and $b=\frac{1}{2}$. So, the period is $\frac{\pi}{|b|}=\frac{\pi}{\frac{1}{2}}=2 \pi$.
Intercept: $\left(\frac{\pi}{2 b}, 0\right)=\left(\frac{\pi}{2\left(\frac{1}{2}\right)}, 0\right)=(\pi, 0)$
Asymptotes: $x=0 ; x=\frac{\pi}{|b|}=\frac{\pi}{\frac{1}{2}}$, or $x=2 \pi$
Halfway points: $\left(\frac{\pi}{4 b}, a\right)=\left(\frac{\pi}{4\left(\frac{1}{2}\right)}, 4\right)=\left(\frac{\pi}{2}, 4\right)$;

$$
\left(\frac{3 \pi}{4 b},-a\right)=\left(\frac{3 \pi}{4\left(\frac{1}{2}\right)},-4\right)=\left(\frac{3 \pi}{2},-4\right)
$$

\qquad

5.5 Practice (continued)

The graph of g is a horizontal stretch by a factor of 2 and a vertical stretch by a factor of 4 of the graph of $f(x)=\cot x$.

Example \#2

Graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.
$g(x)=\frac{1}{2} \sec \pi x$
Step 1 Graph the function $y=\frac{1}{2} \cos \pi x$. The period
is $\frac{2 \pi}{\pi}=2$.
Step 2 Graph asymptotes of g. Because the asymptotes of g occur when $\frac{1}{2} \cos \pi x=0, \operatorname{graph} x=-\frac{1}{2}, x=\frac{1}{2}$, and $x=\frac{3}{2}$.
Step 3 Plot points on g, such as $\left(0, \frac{1}{2}\right)$ and $\left(1,-\frac{1}{2}\right)$.
Then use the asymptotes to sketch the curve.

The graph of g is a horizontal shrink by a factor of $\frac{1}{\pi}$ and a vertical shrink by a factor of $\frac{1}{2}$ of the graph of $f(x)=\sec x$.
\qquad
\qquad
5.5 Practice (continued)

Practice A

In Exercises 1-6, graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

1. $g(x)=\tan 2 x$

2. $g(x)=\frac{1}{4} \tan \frac{\pi}{4} x$

3. $g(x)=2 \sec 2 x$

4. $g(x)=2 \cot \frac{1}{2} x$

5. $g(x)=\frac{1}{2} \cot 3 x$

6. $g(x)=\csc 2 \pi x$

\qquad

Practice B

In Exercises 1-4, graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.

1. $g(x)=2 \tan 4 x$
2. $g(x)=3 \cot \frac{1}{2} x$
3. $g(x)=\frac{1}{4} \tan 2 \pi x$
4. $g(x)=\frac{1}{3} \cot \pi x$
5. Describe and correct the error in describing the transformation of $f(x)=\tan x$ represented by $g(x)=4 \tan \frac{1}{2} x$.

X A vertical stretch by a factor of 4 and a horizontal shrink by a factor of $\frac{1}{2}$
6. Use the given graph to graph each function.
a. $f(x)=4 \sec \frac{1}{2} x$
b. $\quad f(x)=\frac{1}{2} \csc \pi x$

In Exercises 7-10, graph one period of the function. Describe the graph of g as a transformation of the graph of its parent function.
7. $g(x)=\frac{1}{3} \csc \pi x$
8. $g(x)=\frac{1}{2} \sec 6 x$
9. $g(x)=\sec \frac{\pi}{2} x$
10. $g(x)=\csc \frac{\pi}{3} x$

