\qquad

5.6

Modeling with Trigonometric Functions

For use with Exploration 5.6

Essential Question What are the characteristics of the reallife problems

 that can be modeled by trigonometric functions?
1 EXPLORATION: Modeling Electric Currents

Work with a partner. Find a sine function that models the electric current shown in each oscilloscope screen. State the amplitude and period of the graph.
a.

b.

c.

d.

\qquad
5.6 Modeling with Trigonometric Functions (continued)

1 EXPLORATION: Modeling Electric Currents (continued)
e.

f.

Communicate Your Answer

2. What are the characteristics of the real-life problems that can be modeled by trigonometric functions?
3. Use the Internet or some other reference to find examples of real-life situations that can be modeled by trigonometric functions.
\qquad
\qquad

For use after Lesson 5.6

Notes:

Worked-Out Examples

Example \#1

Find the frequency of the function.
$y=\sin 3 x$

The period is $\frac{2 \pi}{3}$.

$$
\begin{aligned}
\text { frequency } & =\frac{1}{\text { period }} \\
& =\frac{1}{\frac{2 \pi}{3}} \\
& =\frac{3}{2 \pi}
\end{aligned}
$$

Example \#2

Find the frequency of the function.
$y=\cos \frac{\pi x}{4}$
The period is 8 .

$$
\begin{aligned}
\text { frequency } & =\frac{1}{\text { period }} \\
& =\frac{1}{8}
\end{aligned}
$$

\qquad Date \qquad

5.6 Practice (continued)

Practice A

1. An alternating current generator (AC generator) converts motion to electricity by generating sinusoidal voltage. Assuming that there is no vertical offset and phase shift, the voltage oscillates between -170 volts and +170 volts with a frequency of 60 hertz. Write and graph a sine model that gives the voltage V as a function of the time t (in seconds).

In Exercises 2-5, write a function for the sinusoid.

2.

3.

\qquad
\qquad

5.6 Practice (continued)

5.

6. The pedal of a bicycle wheel is 7 inches long. The lowest point of the pedal is 4 inches above the ground. A cyclist pedals 3 revolutions per second. Write a model for the height h (in inches) of the pedal as a function of the time t (in seconds) given that the pedal is at its lowest point when $t=0$.
7. The London Eye, the tallest Ferris wheel in Europe, has a diameter of 120 meters and the whole structure is 135 meters tall. The Ferris wheel completes one revolution in about 30 minutes. Write a model for the height h (in meters) of a passenger capsule as a function of the time t (in seconds) given that the capsule is at its highest point when $t=0$.
\qquad
\qquad

Practice B

In Exercises 1-4, find the frequency of the function.

1. $y=\cos 3 x$
2. $y=-\cos 4 x-3$
3. $y=\sin \frac{\pi x}{2}$
4. $y=4 \cos 0.4 x-3$
5. A sub-contra-octave A tuning fork (corresponds to the lowest note on a piano keyboard) vibrates with a frequency f of 27.5 hertz (cycles per second). You strike a sub-contra-octave A tuning fork with a force that produces a maximum pressure of 4 Pascals. Write and graph a sine model that gives the pressure P as a function of the time t (in seconds).

In Exercises 6 and 7, write a function for the sinusoid.

6.

7.

8. When you ride a Ferris wheel, your distance from the ground will vary with respect to the number of seconds that have elapsed since the wheel started. The table shows your height h (in meters) above the ground at time t as you ride the Ferris wheel.

\boldsymbol{t}	0	1	2	3	4	5	6	7	8	9	10	11	12	15	20
\boldsymbol{h}	1	2.3	5.8	10.2	13.7	15	13.7	10.2	5.8	2.3	1	2.3	5.8	15	1

a. Use sinusoidal regression to find a model that gives h as a function of t.
b. Predict your height above the ground after 42 seconds have elapsed.

