$\qquad$

## 6.4 <br> Properties of Parallelograms <br> For use with Exploration 6.4

## Essential Question What are the properties of parallelograms?

## 1 EXPLORATION: Discovering Properties of Parallelograms

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software.
a. Construct any parallelogram and label it $A B C D$. Explain your process.

b. Find the angle measures of the parallelogram. What do you observe?
c. Find the side lengths of the parallelogram. What do you observe?
d. Repeat parts (a)-(c) for several other parallelograms. Use your results to write conjectures about the angle measures and side lengths of a parallelogram.
$\qquad$
6.4 Properties of Parallelograms (continued)

2 EXPLORATION: Discovering a Property of Parallelograms
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software.
a. Construct any parallelogram and label it $A B C D$.
b. Draw the two diagonals of the parallelogram. Label the point of intersection $E$.

Sample

c. Find the segment lengths $A E, B E, C E$, and $D E$. What do you observe?
d. Repeat parts (a)-(c) for several other parallelograms. Use your results to write a conjecture about the diagonals of a parallelogram.

## Communicate Your Answer

3. What are the properties of parallelograms?
$\qquad$
$\qquad$

## Practice

## Theorems

## Parallelogram Opposite Sides Theorem

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

If $P Q R S$ is a parallelogram, then $\overline{P Q} \cong \overline{R S}$
 and $\overline{Q R} \cong \overline{S P}$.

Notes:

## Parallelogram Opposite Angles Theorem

If a quadrilateral is a parallelogram, then its opposite angles are congruent.

If $P Q R S$ is a parallelogram, then $\angle P \cong \angle R$ and $\angle Q \cong \angle S$.


## Notes:

$\qquad$

### 6.4 Practice (continued)

## Parallelogram Consecutive Angles Theorem

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

If $P Q R S$ is a parallelogram, then $x^{\circ}+y^{\circ}=180^{\circ}$.


## Notes:

## Parallelogram Diagonals Theorem

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

If $P Q R S$ is a parallelogram, then $\overline{Q M} \cong \overline{S M}$ and $\overline{P M} \cong \overline{R M}$.


## Notes:

## Worked-Out Examples

## Example \#1

Find the measure of the indicated angle in the parallelogram.
Find $m \angle B$.

$$
\begin{aligned}
m \angle A+m \angle B & =180^{\circ} \\
51^{\circ}+m \angle B & =180^{\circ} \\
m \angle B & =129^{\circ}
\end{aligned}
$$



## Example \#2

Find the value of each variable in the parallelogram.
$k+4=11$
$k=7$
$m=8$
So, $k=7$ and $m=8$.

$\qquad$
$\qquad$

### 6.4 Practice (continued)

## Practice A

In Exercises 1-3, find the value of each variable in the parallelogram.


In Exercises 4-11, find the indicated measure in $\square M N O P$. Explain your reasoning.
4. $P O$
5. $O Q$
6. $N O$
7. $P Q$

8. $m \angle P M N$
9. $m \angle N O P$
10. $m \angle O P M$
11. $m \angle N M O$
$\qquad$
$\qquad$

## Practice B

## In Exercises 1-4, find the value of each variable in the parallelogram.

1. 


2.

3.

4.

5. Find the coordinates of the intersection of the diagonals of the parallelogram with vertices $(-2,-4),(-4,4),(2,12)$, and $(4,4)$.
6. Three vertices of $\square A B C D$ are $A(1,5), B(1,1)$, and $D(2,2)$. Find the coordinates of the remaining vertex.
7. Use the diagram to write a two-column proof.

Given $C E H F$ is a parallelogram. $D$ bisects $\overline{C E}$ and G bisects $\overline{F H}$.

Prove $\triangle C D F \cong \triangle H G E$

8. State whether each statement is always, sometimes, or never true for a parallelogram. Explain your reasoning.
a. The opposite sides are congruent.
b. All four sides are congruent.
c. The diagonals are congruent.
d. The opposite angles are congruent.
e. The adjacent angles are congruent.
f. The adjacent angles are complementary.

