\qquad

Proving That a Quadrilateral Is a Parallelogram For use with Exploration 6.5

Essential Question How can you prove that a quadrilateral is a parallelogram?

1 EXPLORATION: Proving That a Quadrilateral Is a Parallelogram

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software.

Sample
Points
$A(1,-1)$
$B(0,2)$
$C(4,4)$
$D(5,1)$
Segments

$$
A B=3.16
$$

$$
B C=4.47
$$

$$
C D=3.16
$$

$$
D A=4.47
$$

a. Construct any quadrilateral $A B C D$ whose opposite sides are congruent.
b. Is the quadrilateral a parallelogram? Justify your answer.
c. Repeat parts (a) and (b) for several other quadrilaterals. Then write a conjecture based on your results.
d. Write the converse of your conjecture. Is the converse true? Explain.
\qquad
6.5 Proving That a Quadrilateral Is a Parallelogram (continued)

2 EXPLORATION: Proving That a Quadrilateral Is a Parallelogram

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software.
a. Construct any quadrilateral $A B C D$ whose opposite angles are congruent.
b. Is the quadrilateral a parallelogram? Justify your answer.

Sample	
Points	Angles
$A(0,0)$	$\angle A=60.26^{\circ}$
$B(1,3)$	$\angle B=119.74^{\circ}$
$C(6,4)$	$\angle C=60.26^{\circ}$
$D(5,1)$	$\angle D=119.74^{\circ}$

c. Repeat parts (a) and (b) for several other quadrilaterals. Then write a conjecture based on your results.
d. Write the converse of your conjecture. Is the converse true? Explain.

Communicate Your Answer

3. How can you prove that a quadrilateral is a parallelogram?
4. Is the quadrilateral at the right a parallelogram? Explain your reasoning.

\qquad

6.5

Practice

For use after Lesson 6.5

Theorems

Parallelogram Opposite Sides Converse

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{D A}$, then $A B C D$ is a parallelogram.

Notes:

Parallelogram Opposite Angles Converse

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then $A B C D$ is a parallelogram.

Notes:

Opposite Sides Parallel and Congruent Theorem

If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.

If $\overline{B C} \| \overline{A D}$ and $\overline{B C} \cong \overline{A D}$, then $A B C D$ is a parallelogram.

Notes:

Parallelogram Diagonals Converse

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

If $\overline{B D}$ and $\overline{A C}$ bisect each other, then $A B C D$ is a parallelogram.

Notes:
\qquad
\qquad

6.5 Practice (continued)

Core Concepts

Ways to Prove a Quadrilateral Is a Parallelogram

1. Show that both pairs of opposite sides are parallel. (Definition)
2. Show that both pairs of opposite sides are congruent. (Parallelogram Opposite Sides Converse) 3. Show that both pairs of opposite angles are congruent. (Parallelogram Opposite Angles Converse) (Opposite Sides Parallel and Congruent Theorem) 4. Show that one pair of opposite sides are congruent and parallel. 5. Show that the diagonals bisect each other. (Parallelogram Diagonals Converse)

Worked-Out Examples

Example \#1

Find the values of x and y that make the quadrilateral a parallelogram.
$x=114$ and $y=66$ by the Parallelogram Opposite Angles
Converse.

Example \#2

Find the value of x that makes the quadrilateral a parallelogram.
By the Parallelogram Diagonals Converse:

$$
\begin{aligned}
4 x+2 & =5 x-6 \\
2 & =x-6 \\
8 & =x
\end{aligned}
$$

So, $x=8$.
\qquad

6.5 Practice (continued)

Practice A

In Exercises 1-3, state which theorem you can use to show that the quadrilateral is a parallelogram.
1.

2.

3.

In Exercises 4-7, find the values of x and y that make the quadrilateral a parallelogram.
4.

5.

7.

\qquad
\qquad

Practice B

In Exercises 1 and 2, state which theorem you can use to show that the quadrilateral is a parallelogram.
1.

2.

In Exercises 3 and 4, find the value of x that makes the quadrilateral a parallelogram.
3.

4. $\sqrt{(2 x+5)^{\circ}}$

In Exercises 5 and 6, graph the quadrilateral with the given vertices in a coordinate plane. Then show that the quadrilateral is a parallelogram.
5. $W(-3,-1), X(-3,4), Y(3,2), Z(3,-3)$
6. $A(-4,0), B(2,2), C(5,-1), D(-1,-3)$
7. Use the diagram to write a two-column proof.

Given $\angle A \cong \angle F D E$
F is the midpoint of $\overline{A D}$.
D is the midpoint of $\overline{C E}$.

Prove $A B C D$ is a parallelogram.
8. A quadrilateral has two pairs of congruent angles. Can you determine whether the quadrilateral is a parallelogram? Explain your reasoning.
9. An octagon star is shown in the figure on the right.
a. Find $m \angle F C G, m \angle B C F$, and $m \angle D$.
b. State which theorem you can use to show that the quadrilateral is a parallelogram.
c. The length of $\overline{A B}$ is three times the length of $\overline{A D}$. Write an expression for the perimeter of parallelogram $A B C D$ in terms of the variable x.

