6.5

Proving That a Quadrilateral Is a Parallelogram For use with Exploration 6.5

Essential Question How can you prove that a quadrilateral is a parallelogram?

EXPLORATION: Proving That a Quadrilateral Is a Parallelogram

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Construct any quadrilateral *ABCD* whose opposite sides are congruent.
- **b.** Is the quadrilateral a parallelogram? Justify your answer.
- **c.** Repeat parts (a) and (b) for several other quadrilaterals. Then write a conjecture based on your results.
- d. Write the converse of your conjecture. Is the converse true? Explain.

6.5 Proving That a Quadrilateral Is a Parallelogram (continued)

EXPLORATION: Proving That a Quadrilateral Is a Parallelogram

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Construct any quadrilateral *ABCD* whose opposite angles are congruent.
- **b.** Is the quadrilateral a parallelogram? Justify your answer.

- **c.** Repeat parts (a) and (b) for several other quadrilaterals. Then write a conjecture based on your results.
- d. Write the converse of your conjecture. Is the converse true? Explain.

Communicate Your Answer

- 3. How can you prove that a quadrilateral is a parallelogram?
- **4.** Is the quadrilateral at the right a parallelogram? Explain your reasoning.

С В 53°

6.5 Practice For use after Lesson 6.5

Theorems

Parallelogram Opposite Sides Converse

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$, then ABCD is a parallelogram.

Notes:

Parallelogram Opposite Angles Converse

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then *ABCD* is a parallelogram.

Notes:

Opposite Sides Parallel and Congruent Theorem

If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.

If $\overline{BC} \parallel \overline{AD}$ and $\overline{BC} \cong \overline{AD}$, then ABCD is a parallelogram.

Notes:

Parallelogram Diagonals Converse

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

If \overline{BD} and \overline{AC} bisect each other, then ABCD is a parallelogram.

Notes:

С

Date

6.5 Practice (continued)

Core Concepts

Ways to Prove a Quadrilateral Is a Parallelogram

1. Show that both pairs of opposite sides are parallel. <i>(Definition)</i>	
2. Show that both pairs of opposite sides are congruent. (Parallelogram Opposite Sides Converse)	
3. Show that both pairs of opposite angles are congruent. (<i>Parallelogram Opposite Angles Converse</i>)	
4. Show that one pair of opposite sides are congruent and parallel. <i>(Opposite Sides Parallel and Congruent Theorem)</i>	
5. Show that the diagonals bisect each other. (Parallelogram Diagonals Converse)	

Worked-Out Examples

Example #1

Find the values of x and y that make the quadrilateral a parallelogram.

x = 114 and y = 66 by the Parallelogram Opposite Angles Converse.

Example #2

Find the value of x that makes the quadrilateral a parallelogram.

By the Parallelogram Diagonals Converse:

4x + 2 = 5x - 6 2 = x - 6 8 = xSo, x = 8.

Name

6.5 Practice (continued)

Practice A

In Exercises 1–3, state which theorem you can use to show that the quadrilateral is a parallelogram.

In Exercises 4–7, find the values of x and y that make the quadrilateral a parallelogram.

4*y* + 2

Practice B

In Exercises 1 and 2, state which theorem you can use to show that the quadrilateral is a parallelogram.

In Exercises 3 and 4, find the value of x that makes the quadrilateral a parallelogram.

D

In Exercises 5 and 6, graph the quadrilateral with the given vertices in a coordinate plane. Then show that the guadrilateral is a parallelogram.

5. W(-3, -1), X(-3, 4), Y(3, 2), Z(3, -3) **6.** A(-4, 0), B(2, 2), C(5, -1), D(-1, -3)

7. Use the diagram to write a two-column proof. Given $\angle A \cong \angle FDE$ F is the midpoint of AD.

D is the midpoint of CE.

- 8. A quadrilateral has two pairs of congruent angles. Can you determine whether the quadrilateral is a parallelogram? Explain your reasoning.
- 9. An octagon star is shown in the figure on the right.
 - **a.** Find $m \angle FCG$, $m \angle BCF$, and $m \angle D$.
 - **b.** State which theorem you can use to show that the quadrilateral is a parallelogram.
 - **c.** The length of \overline{AB} is three times the length of AD. Write an expression for the perimeter of parallelogram *ABCD* in terms of the variable x.

Ε