\qquad

6.6
 Properties of Special Parallelograms

For use with Exploration 6.6
Essential Question What are the properties of the diagonals of rectangles, rhombuses, and squares?

1 EXPLORATION: Identifying Special Quadrilaterals

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software.
a. Draw a circle with center A
b. Draw two diameters of the circle.

Label the endpoints B, C, D, and E.
c. Draw quadrilateral $B D C E$.

Sample

d. Is $B D C E$ a parallelogram?
rectangle? rhombus? square?
Explain your reasoning.
e. Repeat parts (a) - (d) for several other circles. Write a conjecture based on your results.
\qquad
6.6 Properties of Special Parallelograms (continued)

2 EXPLORATION: Identifying Special Quadrilaterals
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software.
a. Construct two segments that are perpendicular bisectors of each other. Label the endpoints A, B, D, and E. Label the intersection C.
b. Draw quadrilateral $A E B D$.
c. Is $A E B D$ a parallelogram? rectangle? rhombus? square?
Explain your reasoning.

Sample

d. Repeat parts (a) - (c) for several other segments. Write a conjecture based on your results.

Communicate Your Answer

3. What are the properties of the diagonals of rectangles, rhombuses, and squares?
4. Is $R S T U$ a parallelogram? rectangle? rhombus? square? Explain your reasoning.
5. What type of quadrilateral has congruent diagonals that bisect
 each other?
\qquad
\qquad
6.6 Practice

Core Concepts

Rhombuses, Rectangles, and Squares

A rhombus is a parallelogram with four congruent sides.

A rectangle is a parallelogram with four right angles.

A square is a parallelogram with four congruent sides and four right angles.

Notes:

Rhombus Corollary

A quadrilateral is a rhombus if and only if it has four congruent sides.
$A B C D$ is a rhombus if and only if $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$.

Rectangle Corollary

A quadrilateral is a rectangle if and only if it has four right angles.
$A B C D$ is a rectangle if and only if $\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

Square Corollary

A quadrilateral is a square if and only if it is a rhombus and a rectangle.
$A B C D$ is a square if and only if $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$ and $\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

Notes:

Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.
$\square A B C D$ is a rhombus if and only if $\overline{A C} \perp \overline{B D}$.

Notes:

\qquad

6.6 Practice (continued)

Rhombus Opposite Angles Theorem

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.
$\square A B C D$ is a rhombus if and only if $\overline{A C}$ bisects $\angle B C D$ and $\angle B A D$, and
 $\overline{B D}$ bisects $\angle A B C$ and $\angle A D C$.

Notes:

Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.
$\square A B C D$ is a rectangle if and only if $\overline{A C} \cong \overline{B D}$.

Notes:

Worked-Out Examples

Example \#1

For any rhombus JKLM, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.
$\overline{J L} \cong \overline{K M}$
$\overline{J L}$ is sometimes congruent to $\overline{K M}$. Some rhombuses are squares.

Example \#2

Find the measures of the numbered angles in rhombus DEFG.
By the Parallelogram Consecutive Angles Theorem, $m \angle E D G=180^{\circ}-106^{\circ}=74^{\circ}$. So, by the Rhombus Opposite Angles Theorem, $m \angle 1=m \angle 2=37^{\circ}$. By the definition of a parallelogram, $\overline{D E} \| \overline{G F}$. So, $m \angle 3=$ 37°, by the Alternate Interior Angles Theorem. By the Rhombus Opposite Angles Theorem, $m \angle 4=37^{\circ}$. By the Parallelogram Opposite Angles Theorem, $m \angle 5=106^{\circ}$.

\qquad
\qquad

6.6 Practice (continued)

Practice A

1. For any rhombus $M N O P$, decide whether the statement $\overline{M O} \cong \overline{N P}$ is always or sometimes true.

Draw a diagram and explain your reasoning.
2. For any rectangle $P Q R S$, decide whether the statement $\angle P Q S \cong \angle R S Q$ is always or sometimes true. Draw a diagram and explain your reasoning.

In Exercises 3-5, the diagonals of rhombus ABCD intersect at E. Given that $m \angle B C A=44^{\circ}, A B=9$, and $A E=7$, find the indicated measure.
3. $B C$
4. $A C$
5. $m \angle A D C$

In Exercises 6-8, the diagonals of rectangle EFGH intersect at I. Given that $m \angle H F G=31^{\circ}$ and $E G=17$, find the indicated measure.
6. $m \angle F H G$
7. $H F$
8. $m \angle E F H$

In Exercises 9-11, the diagonals of square LMNP intersect at K. Given that $M K=\frac{1}{\mathbf{2}}$, find the indicated measure.
9. $P K$
10. $m \angle P K N$
11. $m \angle M N K$

\qquad

Practice B

In Exercises 1 and 2, decide whether quadrilateral JKLM is a rectangle, a rhombus, or a square. Give all names that apply. Explain your reasoning.

1. $J(3,5), K(7,6), L(6,2), M(2,1)$
2. $J(-4,-1), K(-1,5), L(5,2), M(2,-4)$

In Exercises 3-7, the diagonals of rhombus $A B C D$ intersect at M. Given that $m \angle M A B=53^{\circ}, M B=16$, and $A M=12$, find the indicated measure.
3. $m \angle A M D$
4. $m \angle A D M$
5. $m \angle A C D$
6. $D M$
7. $A C$

8. Find the point of intersection of the diagonals of the rhombus with vertices $(-1,2),(3,4),(5,8)$, and $(1,6)$.
9. Use the figure to write a two-column proof.

Given $W X Y Z$ is a parallelogram.

$$
\angle X W Y \cong \angle X Y W
$$

Prove $W X Y Z$ is a rhombus.

10. Your friend claims that you can transform every rhombus into a square using a similarity transformation. Is your friend correct? Explain your reasoning.
11. A quadrilateral has four congruent angles. Is the quadrilateral a parallelogram? Explain your reasoning.
12. A quadrilateral has two consecutive right angles. If the quadrilateral is not a rectangle, can it still be a parallelogram? Explain your reasoning.
13. Will a diagonal of a rectangle ever divide the rectangle into two isosceles triangles? Explain your reasoning.

