6.6

Properties of Special Parallelograms

For use with Exploration 6.6

Essential Question What are the properties of the diagonals of rectangles, rhombuses, and squares?

EXPLORATION: Identifying Special Quadrilaterals

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

a. Draw a circle with center *A*.

Sample

- **b.** Draw two diameters of the circle. Label the endpoints *B*, *C*, *D*, and *E*.
- c. Draw quadrilateral *BDCE*.

d. Is *BDCE* a parallelogram? rectangle? rhombus? square? Explain your reasoning.

e. Repeat parts (a) – (d) for several other circles. Write a conjecture based on your results.

6.6 Properties of Special Parallelograms (continued)

2 **EXPLORATION:** Identifying Special Quadrilaterals

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Sample

Work with a partner. Use dynamic geometry software.

- **a.** Construct two segments that are perpendicular bisectors of each other. Label the endpoints *A*, *B*, *D*, and *E*. Label the intersection *C*.
- **b.** Draw quadrilateral *AEBD*.
- **c.** Is *AEBD* a parallelogram? rectangle? rhombus? square? Explain your reasoning.

d. Repeat parts (a) – (c) for several other segments. Write a conjecture based on your results.

Communicate Your Answer

- 3. What are the properties of the diagonals of rectangles, rhombuses, and squares?
- **4.** Is *RSTU* a parallelogram? rectangle? rhombus? square? Explain your reasoning.

5. What type of quadrilateral has congruent diagonals that bisect each other?

Core Concepts

Rhombuses, Rectangles, and Squares

Notes:

A **rhombus** is a parallelogram with four congruent sides.

A **rectangle** is a parallelogram with four right angles.

A **square** is a parallelogram with four congruent sides and four right angles.

Rhombus Corollary

A quadrilateral is a rhombus if and only if it has four congruent sides.

ABCD is a rhombus if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$.

A quadrilateral is a rectangle if and only if it has four right angles.

Rectangle Corollary

Square Corollary

A quadrilateral is a square if and only if it is a rhombus and a rectangle.

ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

ABCD is a square if and only if $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$ and $\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

Notes:

Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

 $\square ABCD$ is a rhombus if and only if $\overline{AC} \perp \overline{BD}$.

Notes:

6.6 Practice (continued)

Rhombus Opposite Angles Theorem

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

 $\square ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle BCD$ and $\angle BAD$, and \overline{BD} bisects $\angle ABC$ and $\angle ADC$.

Notes:

Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.

 $\square ABCD$ is a rectangle if and only if $\overline{AC} \cong \overline{BD}$.

Notes:

Worked-Out Examples

Example #1

For any rhombus JKLM, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.

 $\overline{JL} \cong \overline{KM}$

 \overline{JL} is sometimes congruent to \overline{KM} . Some rhombuses are squares.

Example #2

Find the measures of the numbered angles in rhombus DEFG.

By the Parallelogram Consecutive Angles Theorem, $m \angle EDG = 180^\circ - 106^\circ = 74^\circ$. So, by the Rhombus Opposite Angles Theorem, $m \angle 1 = m \angle 2 = 37^\circ$. By the definition of a parallelogram, $\overline{DE} || \overline{GF}$. So, $m \angle 3 = 37^\circ$, by the Alternate Interior Angles Theorem. By the Rhombus Opposite Angles Theorem, $m \angle 4 = 37^\circ$. By the Parallelogram Opposite Angles Theorem, $m \angle 5 = 106^\circ$.

Date_

6.6 **Practice** (continued)

Practice A

- **1.** For any rhombus *MNOP*, decide whether the statement $\overline{MO} \cong \overline{NP}$ is *always* or *sometimes* true. Draw a diagram and explain your reasoning.
- **2.** For any rectangle *PQRS*, decide whether the statement $\angle PQS \cong \angle RSQ$ is *always* or *sometimes* true. Draw a diagram and explain your reasoning.

In Exercises 3–5, the diagonals of rhombus *ABCD* intersect at *E*. Given that $m \angle BCA = 44^\circ$, AB = 9, and AE = 7, find the indicated measure.

3. *BC* **4.** *AC* **5.** $m \angle ADC$

Date

In Exercises 6–8, the diagonals of rectangle *EFGH* intersect at *I*. Given that $m \angle HFG = 31^{\circ}$ and EG = 17, find the indicated measure.

6. $m \angle FHG$ 7. HF 8. $m \angle EFH$

In Exercises 9–11, the diagonals of square *LMNP* intersect at *K*. Given that $MK = \frac{1}{2}$, find the indicated measure.

9. *PK* **10.** $m \angle PKN$ **11.** $m \angle MNK$

242

Practice B

In Exercises 1 and 2, decide whether quadrilateral *JKLM* is a rectangle, a rhombus, or a square. Give all names that apply. Explain your reasoning.

1. J(3, 5), K(7, 6), L(6, 2), M(2, 1)**2.** J(-4, -1), K(-1, 5), L(5, 2), M(2, -4)

In Exercises 3–7, the diagonals of rhombus *ABCD* intersect at *M*. Given that $m \angle MAB = 53^{\circ}$, MB = 16, and AM = 12, find the indicated measure.

- **3.** *m∠AMD*
- **4.** $m \angle ADM$
- **5.** *m∠ACD*
- **6.** *DM*
- **7.** AC
- **8.** Find the point of intersection of the diagonals of the rhombus with vertices (-1, 2), (3, 4), (5, 8),and (1, 6).
- 9. Use the figure to write a two-column proof.
 Given WXYZ is a parallelogram.
 ∠XWY ≅ ∠XYW

Prove *WXYZ* is a rhombus.

Copyright © Big Ideas Learning, LLC

All rights reserved.

- **11.** A quadrilateral has four congruent angles. Is the quadrilateral a parallelogram? Explain your reasoning.
- **12.** A quadrilateral has two consecutive right angles. If the quadrilateral is not a rectangle, can it still be a parallelogram? Explain your reasoning.
- **13.** Will a diagonal of a rectangle ever divide the rectangle into two isosceles triangles? Explain your reasoning.

Date ____

W

Ζ