6.7

Properties of Trapezoids and Kites For use with Exploration 6.7

Essential Question What are some properties of trapezoids and kites?

EXPLORATION: Making a Conjecture about Trapezoids

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Sample

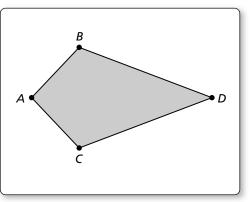
Work with a partner. Use dynamic geometry software.

 a. Construct a trapezoid whose base angles are congruent. Explain your process.

b. Is the trapezoid isosceles? Justify your answer.

c. Repeat parts (a) and (b) for several other trapezoids. Write a conjecture based on your results.

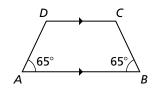
6.7 Properties of Trapezoids and Kites (continued)


2 **EXPLORATION:** Discovering a Property of Kites

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.

- **a.** Construct a kite. Explain your process.
- Sample


b. Measure the angles of the kite. What do you observe?

c. Repeat parts (a) and (b) for several other kites. Write a conjecture based on your results.

Communicate Your Answer

- 3. What are some properties of trapezoids and kites?
- 4. Is the trapezoid at the right isosceles? Explain.

 A quadrilateral has angle measures of 70°, 70°, 110°, and 110°. Is the quadrilateral a kite? Explain.

Theorems

Isosceles Trapezoid Base Angles Theorem

If a trapezoid is isosceles, then each pair of base angles is congruent.

If trapezoid *ABCD* is isosceles, then $\angle A \cong \angle D$ and $\angle B \cong \angle C$.

Isosceles Trapezoid Base Angles Converse

If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid.

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid *ABCD* is isosceles.

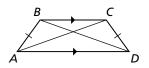
Isosceles Trapezoid Diagonals Theorem

A trapezoid is isosceles if and only if its diagonals are congruent.

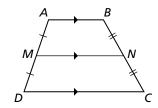
Trapezoid *ABCD* is isosceles if and only if $\overline{AC} \cong \overline{BD}$.

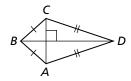
Trapezoid Midsegment Theorem

The midsegment of a trapezoid is parallel to each base, and its length is one-half the sum of the lengths of the bases.


If \overline{MN} is the midsegment of trapezoid *ABCD*, then $\overline{MN} \parallel \overline{AB}$, $\overline{MN} \parallel \overline{DC}$, and $MN = \frac{1}{2}(AB + CD)$.

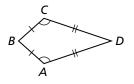
245


Kite Diagonals Theorem


If a quadrilateral is a kite, then its diagonals are perpendicular.

If quadrilateral *ABCD* is a kite, then $\overline{AC} \perp \overline{BD}$.

С



6.7 **Practice** (continued)

Kite Opposite Angles Theorem

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral *ABCD* is a kite and $\overline{BC} \cong \overline{BA}$, then $\angle A \cong \angle C$ and $\angle B \not\equiv \angle D$.

Notes:

Worked-Out Examples

Example #1

Show that the quadrilateral with the given vertices is a trapezoid. Then decide whether it is isosceles.

$$H(1, 9), J(4, 2), K(5, 2), L(8, 9)$$
Slope of $\overline{HL} = \frac{9-9}{8-1} = \frac{0}{7} = 0$

$$HJ = \sqrt{(1-4)^2 + (9-2)^2} = \sqrt{(-3)^2 + (7)^2}$$

$$= \sqrt{9+49} = \sqrt{58}$$
Slope of $\overline{HJ} = \frac{9-2}{1-4} = -\frac{7}{3}$

$$LK = \sqrt{(8-5)^2 + (9-2)^2} = \sqrt{(3)^2 + (7)^2}$$

$$= \sqrt{9+49} = \sqrt{58}$$
Slope of $\overline{LK} = \frac{9-2}{8-5} = \frac{7}{3}$

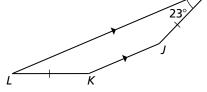
The slope of \overline{HL} equals the slope of \overline{JK} , and the slope of \overline{HJ} is not equal to the slope of \overline{LK} . Because HJKL has exactly one pair of parallel sides, it is a trapezoid. Also, HJ = LK. So, HJKL is an isosceles trapezoid.

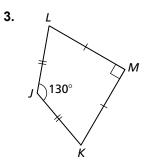
Example #2

Find $m \angle G$

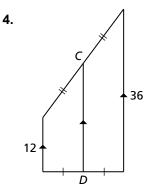
$$m \angle G + m \angle H + m \angle E + m \angle F = 360^{\circ}$$

 $x^{\circ} + 100^{\circ} + x^{\circ} + 40^{\circ} = 360^{\circ}$
 $2x + 140 = 360$
 $2x = 220$
 $x = 110$
So, $m \angle G = 110^{\circ}$.

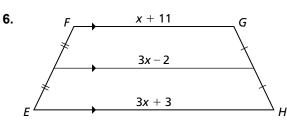

Date

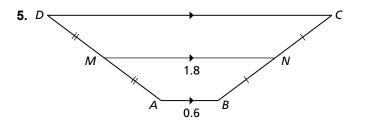

6.7 **Practice** (continued)

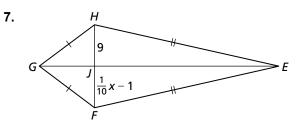
Practice A


Show that the quadrilateral with vertices at Q(0, 3), R(0, 6), S(-6, 0), and T(-3, 0) is a trapezoid. Decide whether the trapezoid is isosceles. Then find the length of the midsegment of the trapezoid.

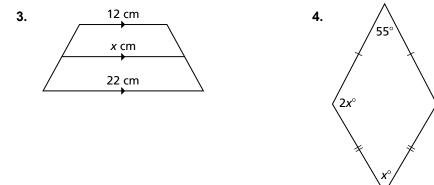
In Exercises 2 and 3, find $m \angle K$ and $m \angle L$. 2.



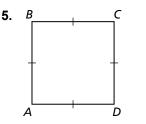



In Exercises 4 and 5, find CD.

In Exercises 6 and 7, find the value of *x*.


Practice B

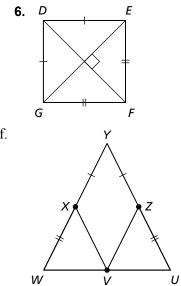
In Exercises 1 and 2, show that the quadrilateral with the given vertices is a trapezoid. Then decide whether it is isosceles.

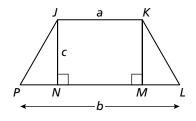

1. T(-1, -2), U(-1, 3), V(3, 4), W(3, -3)

2. P(0, 0), Q(2, 4), R(5, 4), S(5, 0)

In Exercises 3 and 4, find the value of *x*.

In Exercises 5 and 6, give the most specific name for the quadrilateral. Explain your reasoning.




7. Use the diagram to write a two-column proof.Given VXYZ is a kite.

$$\overline{XY} \cong \overline{YZ}, \, \overline{WX} \cong \overline{UZ}$$

Prove $\triangle WXV \cong \triangle UZV$

- Three vertices of a trapezoid are given by (3, -6), (3, -2), and (6, -8). Find the fourth vertex such that the trapezoid is an isosceles trapezoid.
- **9.** Is it possible to have a concave kite? Explain your reasoning.
- **10.** The diagram shows isosceles trapezoid *JKLP* with base lengths *a* and *b*, and height *c*.
 - **a.** Explain how you know *JKMN* is a rectangle. Write the area of *JKMN*.
 - **b.** Write the formula for the area of $\triangle JNP$.
 - **c.** Write and simplify the formula for the area of trapezoid *JKLP*.

