7.2 Finding Arc Measures For use with Exploration 7.2

Essential Question How are circular arcs measured?

A **central angle** of a circle is an angle whose vertex is the center of the circle. A *circular arc* is a portion of a circle, as shown below. The measure of a circular arc is the measure of its central angle.

If $m \angle AOB < 180^\circ$, then the circular arc is called a **minor arc** and is denoted by AB.

EXPLORATION: Measuring Circular Arcs

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to find the measure of \widehat{BC} . Verify your answers using trigonometry.

7.2 Finding Arc Measures (continued)

Communicate Your Answer

2. How are circular arcs measured?

3. Use dynamic geometry software to draw a circular arc with the given measure.

a.	30°	b.	45°
c.	60°	d.	90°

Core Concepts

Measuring Arcs

The **measure of a minor arc** is the measure of its central angle. The expression \widehat{mAB} is read as "the measure of arc *AB*."

The measure of the entire circle is 360° . The **measure of a major arc** is the difference of 360° and the measure of the related minor arc. The measure of a semicircle is 180° .

Date

 $\widehat{mADB} = 360^\circ - 50^\circ = 310^\circ$

Notes:

Postulates

Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

Notes:

Theorems

Congruent Circles Theorem

Two circles are congruent circles if and only if they have the same radius.

Notes:

7.2 Practice (continued)

Congruent Central Angles Theorem

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding central angles are congruent.

Notes:

 $\widehat{BC} \cong \widehat{DE}$ if and only if $\angle BAC \cong \angle DAE$.

Similar Circles Theorem

All circles are similar.

Notes:

Worked-Out Examples

Example #1

Name the minor arc and find its measure. Then name the major arc and find its measure.

The minor arc is \widehat{JL} and it has a measure of 120°. The major arc is \widehat{JKL} and its measure is $360^{\circ} - 120^{\circ} = 240^{\circ}$.

Example #2

Find the measure of each arc.

a. \widehat{JL}

b. \widehat{KM}

c. JLM

d. *JM*

a.
$$mJL = mJK + mKL = 53^{\circ} + 79^{\circ} = 132^{\circ}$$

b. $m\widehat{KM} = m\widehat{KL} + m\widehat{LM} = 79^{\circ} + 68^{\circ} = 147^{\circ}$
c. $m\widehat{JLM} = m\widehat{JK} + m\widehat{KL} + m\widehat{LM} = 53^{\circ} + 79^{\circ} + 68^{\circ} = 200^{\circ}$
d. $m\widehat{JM} = 360^{\circ} - 200^{\circ} = 160^{\circ}$

Name

7.2 Practice (continued)

Practice A

In Exercises 1–8, identify the given arc as a *major arc*, *minor arc*, or *semicircle*. Then find the measure of the arc.

- **9.** In $\bigcirc E$ above, tell whether $\widehat{ABC} \cong \widehat{ADC}$. Explain why or why not.
- **10.** In $\bigcirc K$, find the measure of \widehat{DE} .

11. Find the value of x. Then find the measure of \widehat{AB} .

Practice B

In Exercises 1–4, identify the given arc as a *major arc*, *minor arc*, or *semicircle*. Then find the measure of the arc of $\odot U$ if \overline{SQ} and \overline{PR} are diameters.

In Exercises 5–7, tell whether the given arcs are congruent. Explain why or why not.

- **10.** A water sprinkler covers the area shown in the figure. It moves through the covered area at a rate of about 5° per second.
 - **a.** What is the measure of the arc covered by the sprinkler?
 - **b.** When the sprinkler starts at the far left position, how long will it take for the sprinkler to reach the far right position?

