\qquad

7.2
 Finding Arc Measures
 For use with Exploration 7.2

Essential Question How are circular arcs measured?

A central angle of a circle is an angle whose vertex is the center of the circle. A circular arc is a portion of a circle, as shown below. The measure of a circular arc is the measure of its central angle.
If $m \angle A O B<180^{\circ}$, then the circular arc is called a minor arc and is denoted by $\overparen{A B}$.

1 EXPLORATION: Measuring Circular Arcs

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software to find the measure of $\overparen{B C}$.
Verify your answers using trigonometry.
a.

Points
$A(0,0)$
$B(5,0)$
$C(4,3)$
b.

Points
$A(0,0)$
$B(5,0)$
$C(3,4)$
\qquad

7.2 Finding Arc Measures (continued)

1 EXPLORATION: Measuring Circular Arcs (continued)
c.

Points $A(0,0)$
$B(4,3)$
$C(3,4)$
d.

Points
$A(0,0)$
$B(4,3)$
$C(-4,3)$

Communicate Your Answer

2. How are circular arcs measured?
3. Use dynamic geometry software to draw a circular arc with the given measure.
a. 30°
b. 45°
c. 60°
d. 90°
\qquad
\qquad

Core Concepts

Measuring Arcs

The measure of a minor arc is the measure of its central angle. The expression $m \overparen{A B}$ is read as "the measure of arc $A B$."

The measure of the entire circle is 360°. The measure of a major arc is the difference of 360° and the measure of the related minor arc. The measure of a semicircle is 180°.

$m \widehat{A D B}=360^{\circ}-50^{\circ}=310^{\circ}$

Notes:

Postulates

Arc Addition Postulate

The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.

Notes:

Theorems

Congruent Circles Theorem

Two circles are congruent circles if and only if they have the same radius.

Notes:

$\odot A \cong \odot B$ if and only if $\overline{A C} \cong \overline{B D}$.
\qquad

7.2 Practice (continued)

Congruent Central Angles Theorem

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding central angles are congruent.

Notes:

$\overparen{B C} \cong \overparen{D E}$ if and only if $\angle B A C \cong \angle D A E$.

Similar Circles Theorem

All circles are similar.

Notes:

Worked-Out Examples

Example \#1

Name the minor arc and find its measure. Then name the major arc and find its measure.
The minor arc is $\overparen{J L}$ and it has a measure of 120°. The major arc is $\widehat{J K L}$ and its measure is $360^{\circ}-120^{\circ}=240^{\circ}$.

Example \#2

Find the measure of each arc.
a. $\overparen{J L}$
b. $\overparen{K M}$
c. $\widehat{J L M}$
d. $\overparen{J M}$

a. $m \overparen{J L}=m \overparen{J K}+m \overparen{K L}=53^{\circ}+79^{\circ}=132^{\circ}$
b. $m \widehat{K M}=m \widehat{K L}+m \widehat{L M}=79^{\circ}+68^{\circ}=147^{\circ}$
c. $m \widehat{J M M}=m \overparen{J K}+m \overparen{K L}+m \overparen{L M}=53^{\circ}+79^{\circ}+68^{\circ}=200^{\circ}$
d. $m \overparen{J M}=360^{\circ}-200^{\circ}=160^{\circ}$
\qquad
\qquad

7.2 Practice (continued)

Practice A

In Exercises 1-8, identify the given arc as a major arc, minor arc, or semicircle. Then find the measure of the arc.

1. $\overparen{A B}$
2. $\overparen{A B C}$
3. $\overparen{A B D}$
4. $\overparen{B C}$
5. $\overparen{B A C}$
6. $\overparen{D A B}$

7. $\overparen{A D}$
8. $\overparen{C D}$
9. In $\odot E$ above, tell whether $\widehat{A B C} \cong \widehat{A D C}$. Explain why or why not.
10. In $\odot K$, find the measure of $\overparen{D E}$.

11. Find the value of x. Then find the measure of $\overparen{A B}$.

\qquad

Practice B

In Exercises 1-4, identify the given arc as a major arc, minor arc, or semicircle.
Then find the measure of the arc of $\odot U$ if $\overline{S Q}$ and $\overline{P R}$ are diameters.

1. $\overparen{Q R S}$
2. $\overparen{T S}$
3. $\overparen{T P S}$
4. $\overparen{P Q}$

In Exercises 5-7, tell whether the given arcs are congruent. Explain why or why not.
5. $\overparen{A C}$ and $\overparen{B D}$

6. $\overparen{N M}$ and $\overparen{O P}$

7. $\overparen{A B}$ and $\overparen{C D}$

8. The spokes on a bicycle wheel divide the wheel into congruent sections. What is the measure of each arc in this circle?
9. Find the measure of each arc.
a. $\overparen{A C}$
b. $\overparen{D A B}$

