7.3 Using Chords For use with Exploration 7.3

Essential Question What are two ways to determine when a chord is a diameter of a circle?

EXPLORATION: Drawing Diameters

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to construct a circle of radius 5 with center at the origin. Draw a diameter that has the given point as an endpoint. Explain how you know that the chord you drew is a diameter.

a. (4,3))	b.	(0,5)
c. (-3,	4)	d.	(-5,0)

EXPLORATION: Writing a Conjecture about Chords

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to construct a chord \overline{BC} of a circle A. Construct a chord on the perpendicular bisector of \overline{BC} . What do you notice? Change the original chord and the circle several times. Are your results always the same? Use your results to write a conjecture.

3

7.3 Using Chords (continued)

EXPLORATION: A Chord Perpendicular to a Diameter

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to construct a diameter \overline{BC} of a circle A. Then construct a chord \overline{DE} perpendicular to \overline{BC} at point F. Find the lengths DF and EF. What do you notice? Change the chord perpendicular to \overline{BC} and the circle several times. Do you always get the same results? Write a conjecture about a chord that is perpendicular to a diameter of a circle.

Communicate Your Answer

4. What are two ways to determine when a chord is a diameter of a circle?

Theorems

Congruent Corresponding Chords Theorem

In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

Notes:

 $\widehat{AB} \cong \widehat{CD}$ if and only if $\overline{AB} \cong \overline{CD}$.

Perpendicular Chord Bisector Theorem

If a diameter of a circle is perpendicular to a chord, then the diameter bisects the chord and its arc.

Notes:

If \overline{EG} is a diameter and $\overline{EG} \perp \overline{DF}$, then $\overline{HD} \cong \overline{HF}$ and $\widehat{GD} \cong \widehat{GF}$.

Perpendicular Chord Bisector Converse

If one chord of a circle is a perpendicular bisector of another chord, then the first chord is a diameter.

Notes:

If \overline{QS} is a perpendicular bisector of \overline{TR} , then \overline{QS} is a diameter of the circle.

7.3 **Practice** (continued)

Equidistant Chords Theorem

In the same circle, or in congruent circles, two chords are congruent if and only if they are equidistant from the center.

Notes:

 $\overline{AB} \cong \overline{CD}$ if and only if EF = EG.

Worked-Out Examples

Example #1

Find the measure of \widehat{XYZ} in $\bigcirc C$.

By segment addition, WY = WC + CY and ZX = ZC + CX. Because WC = CX and ZC = YC, WY = ZX. By arc addition, $\widehat{mXYZ} = \widehat{mXY} + \widehat{mYZ}$, $\widehat{mWZY} = \widehat{mWZ} + \widehat{mZY}$, and $\widehat{mXYZ} = \widehat{mXWZ}$. By substitution, $\widehat{mXY} + \widehat{mYZ} = \widehat{mWZ} + \widehat{mZY}$, $\widehat{mXY} + 60^\circ = 110^\circ + 60^\circ$, $\widehat{mXY} + 60^\circ = 170^\circ$, $\widehat{mXY} = 110^\circ$. Therefore, $\widehat{mXYZ} = 110^\circ + 60^\circ = 170^\circ$.

Example #2

Find the value of x.

By the Perpendicular Chord Bisector Theorem:

$$5x + 2 = 7x - 12$$
$$-2x + 2 = -12$$
$$-2x = -14$$
$$x = 7$$

Copyright © Big Ideas Learning, LLC All rights reserved.

Name

7.3

2. *YZ*

4. $m \widehat{XY}$

Practice A

3. *WZ*

In Exercises 1–4, find the measure of the arc or chord in $\odot \mathbf{Q}$.

Practice (continued)

1. $m \widehat{WX}$

In Exercises 7 and 8, find the radius of the circle.

Date_____

Practice B

In Exercises 1–4, use the diagram of $\odot C$.

- **1.** Explain why $\widehat{AD} \cong \widehat{BE}$.
- **2.** Find the value of *x*.
- **3.** Find \widehat{mAD} and \widehat{mBE} .
- **4.** Find \widehat{mBD} .

In Exercises 5–7, find the value of *x*.

29 ●E 29

152°

8. Determine whether \overline{AB} is a diameter of the circle. Explain your reasoning.

In Exercises 9 and 10, find the radius of $\odot C$.

10.

11.	• Copy and complete the proof.		STATEMENTS		REASONS		
	Given	\overline{PQ} is a diameter of $\bigcirc U$.	1.	\overline{PQ} is a diameter of $\bigcirc U$.	1.		
		$\widehat{PT} \cong \widehat{QS}$	2.		2.	Congruent Corresponding	
	Prove	$\triangle PUT \cong \triangle QUS$			2	Chords Theorem	
			3.	$UP \cong UQ \cong UT \cong US$	з.		
	P	U	4.	$\triangle PUT \cong \triangle QUS$	4.		
	T	Q					

12. Briefly explain what other congruence theorem you could use to prove that $\Delta PUT \cong \Delta QUS$ in Exercise 11.

Ś

(50x + 2)°

Date