\qquad

7.4
 Inscribed Angles and Polygons
 For use with Exploration 7.4

Essential Question How are inscribed angles related to their intercepted arcs? How are the angles of an inscribed quadrilateral related to each other?

An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle. An arc that lies between two lines, rays, or segments is called an intercepted arc. Recall that a polygon is an inscribed polygon when all its vertices lie on a circle.

1 EXPLORATION: Inscribed Angles and Central Angles

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software.
a. Construct an inscribed angle in a circle. Then construct the corresponding central angle.
b. Measure both angles. How is the inscribed angle related to its intercepted arc?

Sample

c. Repeat parts (a) and (b) several times. Record your results in the following table.

Write a conjecture about how an inscribed angle is related to its intercepted arc.

Measure of Inscribed Angle	Measure of Central Angle	Relationship

\qquad Date \qquad
7.4 Inscribed Angles and Polygons (continued)

2 EXPLORATION: A Quadrilateral with Inscribed Angles
Go to BigIdeasMath.com for an interactive tool to investigate this exploration.
Work with a partner. Use dynamic geometry software.
a. Construct a quadrilateral with each vertex on a circle.
b. Measure all four angles.

What relationships do you notice?

Sample

c. Repeat parts (a) and (b) several times.

Record your results in the following table.
Then write a conjecture that summarizes
the data.

Angle Measure 1	Angle Measure 2	Angle Measure 3	Angle Measure 4

Communicate Your Answer

3. How are inscribed angles related to their intercepted arcs? How are the angles of an inscribed quadrilateral related to each other?
4. Quadrilateral $E F G H$ is inscribed in $\odot C$, and $m \angle E=80^{\circ}$. What is $m \angle G$?

Explain.
\qquad

Practice

Core Concepts

Inscribed Angle and Intercepted Arc

An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle. An arc that lies between two lines, rays, or segments is called an intercepted arc. If the endpoints of a chord or arc lie on the sides of an inscribed angle, then the chord or arc is said to subtend the angle.

Notes:

$\angle B$ intercepts $\overparen{A C}$.
$\overparen{A C}$ subtends $\angle B$.
$A C$ subtends $\angle B$.

Theorems

Measure of an Inscribed Angle Theorem

The measure of an inscribed angle is one-half the measure of its intercepted arc.

Notes:

$$
m \angle A D B=\frac{1}{2} m \overparen{A B}
$$

Inscribed Angles of a Circle Theorem

If two inscribed angles of a circle intercept the same arc, then the angles are congruent.

Notes:

\qquad

7.4 Practice (continued)

Theorems

Inscribed Right Triangle Theorem

If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle. Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle.

Notes:

Inscribed Quadrilateral Theorem

A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.

Notes:

D, E, F, and G lie on $\odot C$ if and only if
$m \angle D+m \angle F=m \angle E+m \angle G=180^{\circ}$.

Worked-Out Examples

Example \#1

Find the indicated measure.

$$
\begin{aligned}
& m \overparen{R S} \\
& m \overparen{R S}=2 \cdot m \angle R Q S \\
& m \overparen{R S}=2 \cdot 67^{\circ} \\
& m \overparen{R S}=134^{\circ}
\end{aligned}
$$

Example \#2

Find the value of each variable.
By the Inscribed Quadrilateral Theorem:

$$
\begin{aligned}
m \angle Q R S+m \angle S T O & =180^{\circ} \\
x^{\circ}+80^{\circ} & =180^{\circ} \\
x & =100 \\
m \angle R S T+m \angle T Q R & =180^{\circ} \\
y^{\circ}+95^{\circ} & =180^{\circ} \\
x & =85
\end{aligned}
$$

\qquad
\qquad

7.4 Practice (continued)

Practice A

In Exercises 1-5, use the diagram to find the indicated measure.

1. $m \angle A$
2. $m \angle C$
3. $B C$
4. $m \overparen{A C}$

5. $m \overparen{A B}$
6. Name two pairs of congruent angles.

7. Find the value of each variable.

\qquad
\qquad

Practice B

In Exercises 1-8, find the measure of the indicated arc or angle in $\odot P$ given $m \overparen{L M}=84^{\circ}$ and $m \overparen{K N}=116^{\circ}$.

1. $m \angle J K L$
2. $m \angle M K L$
3. $m \angle K M N$
4. $m \angle J K M$
5. $m \angle K L N$
6. $m \angle L N M$

7. $m \overparen{M J}$
8. $m \overparen{L K J}$

In Exercises 9-11, find the value of each variable.

9.

10.

11.

12. Copy and complete the proof.

Given $\odot P$
Prove $\triangle A E D \sim \triangle B E C$

STATEMENTS	REASONS
1. $\odot P$	1. Given
2. -	2. Vertical Angles
Congruence Theorem	
3. $\angle C A D \cong \angle D B C$	3.
4. $\triangle A E D \sim \triangle B E C$	4.

13. Your friend claims that the angles $\angle A D B$ and $\angle B C A$ could be used in Step 3 of Exercise 12. Is your friend correct? Explain your reasoning.
14. Determine whether $\overline{A B}$ is a diameter of the circle. Explain your reasoning.

