1.4 Rewriting Equations and Formulas

ESSentian Qusestion how can you use a formula for one measurement to write a formula for a different measurement?

(1) ACTIVIJY: Using Perimeter and Area Formulas

Work with a partner.

a. - Write a formula for the perimeter P of a rectangle.

- Solve the formula for w.
- Use the new formula to find the width of the rectangle.

b. - Write a formula for the area A of a triangle.
- Solve the formula for h.
- Use the new formula to find the height of the triangle.
c. - Write a formula for the circumference C of a circle.
- Solve the formula for r.
- Use the new formula to find the radius of the circle.

d. - Write a formula for the area A of a trapezoid.
- Solve the formula for h.
- Use the new formula to find the height of the trapezoid.
e. - Write a formula for the area A of a parallelogram.
- Solve the formula for h.
- Use the new formula to find the height of the parallelogram.

2 ACIIVIJY: Using Volume Formulas

Work with a partner.

a. - Write a formula for the volume V of a prism.

- Solve the formula for h.
- Use the new formula to find the height of the prism.

b. - Write a formula for the volume V of a pyramid.
- Solve the formula for B.
- Use the new formula to find the area of the base of the pyramid.
c. - Write a formula for the volume V of a cylinder.
- Solve the formula for B.
- Use the new formula to find the area of the base of the cylinder.

d. - Write a formula for the volume V of a cone.
- Solve the formula for h.
- Use the new formula to find the height of the cone.

What Is Your Answer?

3. IN YOUR OWN WORDS How can you use a formula for one measurement to write a formula for a different measurement? Give an example that is different from the examples on these two pages. complete Exercises 3 and 4 on page 28.

Key Vocabulary 4

literal equation, p. 26

An equation that has two or more variables is called a literal equation. To rewrite a literal equation, solve for one variable in terms of the other variable(s).

EXAMPLE (7) Rewriting an Equation

Solve the equation $2 y+5 x=6$ for y.

$$
\begin{aligned}
& 2 y+5 x=6 \quad \text { Write the equation. } \\
& \text { Undo the addition. } \longrightarrow 2 y+5 x-5 x=6-5 x \quad \text { Subtract } 5 x \text { from each side. } \\
& 2 y=6-5 x \quad \text { Simplify. } \\
& \text { Undo the multiplication. } \rightarrow \frac{2 y}{2}=\frac{6-5 x}{2} \quad \text { Divide each side by } 2 \text {. } \\
& y=3-\frac{5}{2} x \quad \text { Simplify. }
\end{aligned}
$$

On Your Own

Now You're Ready
Exercises 5-10

Solve the equation for y.

1. $5 y-x=10$
2. $4 x-4 y=1$
3. $12=6 x+3 y$

EXAMPLE
 (2) Rewriting a formula

The formula for the surface area S of a cone is $S=\pi r^{2}+\pi r \ell$. Solve
the formula for the slant height ℓ.

Remember

A formula shows how one variable is related to one or more other variables. A formula is a type of literal equation.

$$
\begin{aligned}
S & =\pi r^{2}+\pi r \ell \\
S-\pi r^{2} & =\pi r^{2}-\pi r^{2}+\pi r \ell \\
S-\pi r^{2} & =\pi r \ell \\
\frac{S-\pi r^{2}}{\pi r} & =\frac{\pi r \ell}{\pi r} \\
\frac{S-\pi r^{2}}{\pi r} & =\ell
\end{aligned}
$$

Write the equation.
Subtract πr^{2} from each side. Simplify.

Divide each side by πr.

Simplify.

On Your Own

Now You're Ready
 Exercises 14-19

Solve the formula for the red variable.
4. Area of rectangle: $A=b h$ 5. Simple interest: $I=P r t$
6. Surface area of cylinder: $S=2 \pi r^{2}+2 \pi r h$

Temperature Conversion

A formula for converting from degrees Fahrenheit F to degrees Celsius C is

$$
C=\frac{5}{9}(F-32) .
$$

EXAMPLE

3 Rewriting the Temperature Formula

Solve the temperature formula for F.

$$
\begin{aligned}
& C=\frac{5}{9}(F-32) \quad \text { Write the temperature formula. } \\
& \text { Use the reciprocal. } \longrightarrow \frac{9}{5} \cdot C=\frac{9}{5} \cdot \frac{5}{9}(F-32) \\
& \frac{9}{5} C=F-32 \quad \text { Simplify. } \\
& \text { Undo the subtraction. } \longrightarrow \frac{9}{5} C+32=F-32+32 \quad \text { Add } 32 \text { to each side. } \\
& \frac{9}{5} C+32=F \quad \text { Simplify } . \\
& \because \text { The rewritten formula is } F=\frac{9}{5} C+32 \text {. }
\end{aligned}
$$

EXAMPLE

Which has the greater temperature?

Convert the Celsius temperature of lightning to Fahrenheit.

$$
\begin{aligned}
F & =\frac{9}{5} C+32 & & \text { Write the rewritten formula from Example } 3 . \\
& =\frac{9}{5}(30,000)+32 & & \text { Substitute } 30,000 \text { for } C . \\
& =54,032 & & \text { Simplify. }
\end{aligned}
$$

\therefore Because $54,032^{\circ} \mathrm{F}$ is greater than $11,000^{\circ} \mathrm{F}$, lightning has the greater temperature.

On Your Own

7. Lake Kissimmee has a water temperature of $85^{\circ} \mathrm{F}$. Lake Okeechobee has a water temperature of $30^{\circ} \mathrm{C}$. Which lake has the greater water temperature? Explain.

Vocabulary and Concept Check

1. VOCABULARY Is $-2 x=\frac{3}{8}$ a literal equation? Explain.
2. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.
Solve $4 x-2 y=6$ for y.

$$
\text { Solve } 6=4 x-2 y \text { for } y
$$

Solve $4 x-2 y=6$ for y in terms of x.

$$
\text { Solve } 4 x-2 y=6 \text { for } x \text { in terms of } y
$$

Practice and Problem Solving

3. a. Write a formula for the area A of a triangle.
b. Solve the formula for b.
c. Use the new formula to find the base of the triangle.

4. a. Write a formula for the volume V of a prism.
b. Solve the formula for B.
c. Use the new formula to find the area of the base of the prism.

Solve the equation for y.
(1)
5. $\frac{1}{3} x+y=4$
6. $3 x+\frac{1}{5} y=7$
7. $6=4 x+9 y$
8. $\pi=7 x-2 y$
9. $4.2 x-1.4 y=2.1$
10. $6 y-1.5 x=8$
11. ERROR ANALYSIS Describe and correct the error in rewriting the equation.

$$
3 \begin{aligned}
2 x-y & =5 \\
y & =-2 x+5
\end{aligned}
$$

12. TEMPERATURE The formula $K=C+273.15$ converts temperatures from Celsius C to Kelvin K.
a. Solve the formula for C.
b. Convert 300 K to Celsius.
13. INTEREST The formula for simple interest is $I=$ Prt.
a. Solve the formula for t.
b. Use the new formula to find the value of t in the table.

\boldsymbol{I}	$\$ 75$
\boldsymbol{P}	$\$ 500$
\boldsymbol{r}	5%
\boldsymbol{t}	

Solve the equation for the red variable.
(2) 14. $d=r t$
17. $A=\frac{1}{2} \pi w^{2}+2 \ell w$
15. $e=m c^{2}$
16. $R-C=P$
20. WRITING Why is it useful to rewrite a formula in terms of another variable?
21. TEMPERATURE The formula $K=\frac{5}{9}(F-32)+273.15$ converts temperatures from Fahrenheit F to Kelvin K.
a. Solve the formula for F.
b. The freezing point of water is 273.15 Kelvin. What is this temperature in Fahrenheit?
c. The temperature of dry ice is $-78.5^{\circ} \mathrm{C}$. Which is colder, dry ice or liquid nitrogen?

22. FERRIS WHEEL The Navy Pier Ferris Wheel in Chicago has a circumference that is 56% of the circumference of the first Ferris wheel built in 1893.
a. What is the radius of the Navy Pier Ferris Wheel?
b. What was the radius of the first Ferris wheel?
c. The first Ferris wheel took 9 minutes to make a complete revolution. How fast was the wheel moving?
23. Geometry The formula for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$. Solve the formula for r^{3}. Use guess, check, and revise to find the radius of the sphere.

Fair Game Review what you learned in previous grades \& lessons
Multiply. SKILLS REVIEW HANDBOOK
24. $5 \times \frac{3}{4}$
25. $2.4 \times \frac{8}{3}$
26. $\frac{1}{4} \times \frac{3}{2} \times \frac{8}{9}$
27. $25 \times \frac{3}{5} \times \frac{1}{12}$
28. MULTIPLE CHOICE Which of the following is not equivalent to $\frac{3}{4}$?

SKILLS REVIEW HANDBOOK

(A) 0.75
(B) $3: 4$
(C) 75%
(D) $4: 3$

