2.5 Systems of Linear Equations

Essential Question How can you solve a system of linear equations?

ACTIVITY: Writing a System of Linear Equations

Work with a partner.

Your family starts a bed-and-breakfast in your home. You spend \$500 fixing up a bedroom to rent. Your cost for food and utilities is \$10 per night. Your family charges \$60 per night to rent the bedroom.

a. Write an equation that represents your costs.

Cost, C	_	\$10 per		Number of	+	\$500
(in dollars)		night	·	nights, <i>x</i>	'	<i>ф</i> 300

b. Write an equation that represents your revenue (income).

Revenue, R	_	\$60 per		Number of
(in dollars)		night	Ū	nights, <i>x</i>

c. A set of two (or more) linear equations is called a **system of linear equations**. Write the system of linear equations for this problem.

2

ACTIVITY: Using a Table to Solve a System

Use the cost and revenue equations from Activity 1 to find how many nights you need to rent the bedroom before you recover the cost of fixing up the bedroom. This is the *break-even point* for your business.

a. Copy and complete the table.

x	0	1	2	3	4	5	6	7	8	9	10	11
С												
R												

b. How many nights do you need to rent the bedroom before you break even?

ACTIVITY: Using a Graph to Solve a System

a. Graph the cost equation from Activity 1.

3

- **b.** In the same coordinate plane, graph the revenue equation from Activity 1.
- **c.** Find the point of intersection of the two graphs. The *x*-value of this point is the number of nights you need to rent the bedroom to break even.

ACTIVITY: Using an Equation to Solve a System

a. Write the cost equation from Activity 1.

b. Write the revenue equation from Activity 1.

- **c.** The break-even point occurs when C = R. Set the expression for *C* equal to the expression for *R*. You should obtain an equation with *x* on both sides. Solve this equation for *x*. The solution is your break-even point.
- **d.** Did you obtain the same break-even point in Activities 2, 3, and 4? If not, check your work. The break-even point should be the same in all three activities.

-What Is Your Answer?

- 5. IN YOUR OWN WORDS How can you solve a system of linear equations?
- **6.** When solving a system of linear equations, explain why it is a good idea to use two different ways to find the solution.

Use what you learned about systems of linear equations to complete Exercises 3 and 4 on page 80.

2.5 Lesson

				BigId	easMo	ath 🔪	com
Key Vocabulary () system of linear equations, <i>p. 78</i> solution of a system of linear equations, <i>p. 78</i>	A system of linear equ same variables. A solut is an ordered pair that	ations is a set o ion of a syster makes each eq	of two or mor <mark>n of linear eq</mark> juation true.	e linear <mark>Juations</mark>	equa <mark>s</mark> in tw	tions 70 var	in the iables
EXAMPLE	Solving a Syste	m of Linear	Equations	Using	a Tal	ole	
Reading	Solve the system.	y = x - 5 $y = -3x + 7$	Equation 1 Equation 2	2			
A system of linear	Step 1: Make a table	e of values.	x	0	1	2	3
equations is also called a <i>linear system</i> .	Step 2: Find an <i>x</i> -va	lue that	y = x - 5	-5	-4	-3	-2
	for both equ	ations.	y = -3x + 2	7 7	4	1	-2
	∴ The solution is (3)	, -2).		·			
EXAMPLE	2 Solving a Syste	em of Linear	Equations	Using	a Gr	aph	
	Solve the system.	v = 2x + 3	Equation 1				
	,	y = -x + 6	Equation 2	2			
	Step 1: Graph each	y = -x + 6 equation.	Equation 2	2			
	Step 1: Graph each Step 2: Find the poi graphs appe	y = -x + 6 equation. nt of intersecti ar to intersect	Equation 2 fon. The at (1, 5).	2	y = 2x	<u>(+3</u>	
	Step 1: Graph each Step 2: Find the poi graphs appe Step 3: Check your s	y = -x + 6 equation. nt of intersecti ar to intersect solution.	Equation 2 ion. The at (1, 5).	2	y = 2x	(+3)	
	 Step 1: Graph each Step 2: Find the poi graphs appe Step 3: Check your section 1 	y = -x + 6 equation. nt of intersecti ar to intersect solution. Equation 2	Equation 2 fon. The at (1, 5).		y = 2x	(+3)	
	Step 1: Graph each Step 2: Find the poingraphs apper Step 3: Check your s Equation 1 $y = 2x + 3$	y = -x + 6 equation. nt of intersection ar to intersection solution. Equation y = -x + 2	Equation 2 fon. The at (1, 5).		y = 2x	(+3) y = -	-x+6
	Step 1: Graph each Step 2: Find the poingraphs apper Step 3: Check your s Equation 1 y = 2x + 3 $5 \stackrel{?}{=} 2(1) + 3$	y = -x + 6 equation. nt of intersection ar to intersection solution. Equation 2 y = -x + 6 $y = -x + 6$	Equation 2 fon. The at (1, 5).	2	y = 2x	(+3) y = -	-x + 6
	Step 1: Graph each Step 2: Find the poi graphs appe Step 3: Check your s Equation 1 y = 2x + 3 $5 \stackrel{?}{=} 2(1) + 3$ 5 = 5	y = -x + 6 equation. nt of intersection ar to intersection solution. Equation 2 y = -x + 6 $y = -x + 6$ $5 = -1 + 6$ $5 = 5 = 6$	Equation 2 foon. The at $(1, 5)$.		y = 2x y (1, 5 1 2	(x+3)	-x + 6
	Step 1: Graph each Step 2: Find the poi graphs appe Step 3: Check your s Equation 1 y = 2x + 3 $5 \stackrel{?}{=} 2(1) + 3$ 5 = 5 The solution is (1)	y = -x + 6 equation. nt of intersection ar to intersection solution. Equation 2 y = -x + 6 y = -x + 6 y = -x + 6 5 = -1 + 6 5 = 5 = 5	Equation 2 fon. The at $(1, 5)$.		y = 2x y (1, 5 1 2	x + 3	-x + 6
	Step 1: Graph each Step 2: Find the poi graphs appe Step 3: Check your s Equation 1 y = 2x + 3 $5 \stackrel{?}{=} 2(1) + 3$ 5 = 5 \therefore The solution is (1) On Your Own	y = -x + 6 equation. nt of intersection ar to intersection solution. Equation 2 $y = -x + \frac{5}{2} = -1 = \frac{2}{5} = 5$ (2, 5).	Equation 2 fon. The at $(1, 5)$.		y = 2x y (1, 5 1 2	x + 3	
Now You're Rend.	Step 1: Graph each Step 2: Find the poi graphs appe Step 3: Check your s Equation 1 y = 2x + 3 $5 \stackrel{?}{=} 2(1) + 3$ 5 = 5 \therefore The solution is (1) On Your Own Solve the system of	y = -x + 6 equation. nt of intersection ar to intersection solution. Equation 2 y = -x + 6 5 = -1 + 2 5 = 5 = 5 e., 5).	Equation 2 fon. The at $(1, 5)$.	2 7 7 6 6 5 4 3 7 1 1 7 1 4 3 1	y = 2x	(+3) y =	-x + 6
Now You're Ready Exercises 5-7	Step 1: Graph each Step 2: Find the poi graphs appe Step 3: Check your s Equation 1 y = 2x + 3 $5 \stackrel{?}{=} 2(1) + 3$ 5 = 5 \therefore The solution is (1) On Your Own Solve the system of 1. $y = x - 1$	y = -x + 6 equation. nt of intersection ar to intersection solution. Equation 2 y = -x + 5 $5 = -1 + 5$ $5 = 5$ (1) (1) Equation 2 (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Equation 2 fon. The at $(1, 5)$.	2 7 6 6 5 4 3 7 1 1 7 1 4 3 1 1 1 1 9 1 9	y = 2x $y = 1$	(+3) y =	-x + 6

Solving a System of Linear Equations Algebraically

- **Step 1** Solve both equations for one of the variables.
- **Step 2** Set the expressions equal to each other and solve for the variable.
- **Step 3** Substitute back into one of the original equations and solve for the other variable.

EXAMPLE

3

Solving a System of Linear Equations Algebraically

A middle school yearbook committee has 35 members. There are 7 more girls than boys. Use the models to write a system of linear equations. Then solve the system to find the number of boys *x* and the number of girls *y*.

The system is x + y = 35 and y = x + 7.

y = 35 - x

Step 1: Solve x + y = 35 for *y*.

Subtract *x* from each side.

Step 2: Set the expressions equal to each other and solve for *x*.

$\frac{35-x}{x} = x+7$	Set expressions equal to each other.
28 = 2x	Subtract 7 from each side. Add x to each side.
14 = x	Divide each side by 2.

ow You're Ready

Exercises 13–15

Step 3: Substitute x = 14 into one of the original equations and solve for *y*.

y = x + 7	Write one of the original equations.
= 14 + 7	Substitute 14 for <i>x</i> .
= 21	Add.

There are 14 boys and 21 girls on the yearbook committee.

On Your Own

4. WHAT IF? In Example 3, the yearbook committee has 45 members. Use the models to write a system of linear equations. Then solve the system to find the number of boys *x* and the number of girls *y*.

2.5 Exercises

Vocabulary and Concept Check

- **1. VOCABULARY** Do the equations 4a 3b = 5 and 7b + 2a = -8 form a system of linear equations? Explain.
- **2. REASONING** Can a point in Quadrant II be a break-even point for a system? Explain.

Practice and Problem Solving

Use the table to find the break-even point. Check your solution.

3. C = 15x + 150R = 45x **4.** C = 24x + 80

R = 44x

x	0	1	2	3	4	5	6
С							
R							

x	0	1	2	3	4	5	6
С							
R							

0

Solve the system of linear equations using a table.

1 5.
$$y = x + 4$$

 $y = 3x - 1$
6. $y = 1.5x - 2$
7. $y = \frac{2}{3}x - 3$
 $y = -x + 13$
7. $y = \frac{2}{3}x - 3$
 $y = -2x + 5$

8. ERROR ANALYSIS Describe and correct the error in solving the system of linear equations.

x	0	1	2	3	
y=-2x-1	-1	-3	-5	-7	
y = x - 7	-7	-6	-5	-4	
The solution is $(-5, -5)$.					

- **9. CARRIAGE RIDES** The cost *C* (in dollars) for the care and maintenance of a horse and carriage is C = 15x + 2000, where *x* is the number of rides.
 - **a.** Write an equation for the revenue *R* in terms of the number of rides.
 - **b.** How many rides are needed for the business to break even?

Solve the system of linear equations using a graph.

2 10.
$$y = 2x + 9$$

 $y = 6 - x$
11. $y = -x - 4$
 $y = \frac{3}{5}x + 4$
12. $y = 2x + 5$
 $y = \frac{1}{2}x - 1$

Solve the system of linear equations algebraically.

3 13. $x + y = 27$	14. $y - x = 17$	15. $x - y = 7$
y = x + 3	y = 4x + 2	0.5x + y = 5

16. HOMEWORK You have 42 math and science problems for homework. You have 10 more math problems than science problems. Use the model to write a system of linear equations. How many problems do you have in each subject?

- **17. CANOEING** You and your friend are canoeing on the Withlacoochee River Canoe Trail. Your position on the trail *y* (in miles) is represented by y = 3.5x + 28, where *x* is in hours. Your friend's position is represented by y = 2x + 37.
 - **a.** How long will it take you to catch up with your friend?
 - **b.** How far will you each have traveled when you catch up with your friend?

18. You buy *x* bottles of face paint and *y* brushes at two stores. The amounts you spend are represented by 10x + 7.5y = 42.5 and 8x + 6y = 34. How many bottles of face paint and brushes did you buy?

Fair Game Review What you learned in previous grades & lessons

Decide whether the two equations are equivalent.

19. 4n + 1 = n - 8**20.** 2a + 6 = 12**21.** $7v - \frac{3}{2} = 5$ 3n = -9a + 3 = 614v - 3 = 15

22. MULTIPLE CHOICE Which line has the same slope as $y = \frac{1}{2}x - 3$?

(A) y = -2x + 4 (B) y = 2x + 3 (C) y - 2x = 5 (D) 2y - x = 7