Essential Question How can you use the Pythagorean Theorem to solve real-life problems?

STATE STANDARDS MA.8.G.2.4 MA.8.A.6.2 MA.8.A.6.4

ACTIVITY: Using the Pythagorean Theorem

Work with a partner.

- a. A baseball player throws a ball from second base to home plate. How far does the player throw the ball? Include a diagram showing how you got your answer. Decide how many decimal points of accuracy are reasonable. Explain your reasoning.
- **b.** The distance from the pitcher's mound to home plate is 60.5 feet. Does this form a right triangle with first base? Explain your reasoning.

1

ACTIVITY: Firefighting and Ladders

Work with a partner.

The recommended angle for a firefighting ladder is 75°.

When a 110-foot ladder is put up against a building at this angle, the base of the ladder is about 28 feet from the building.

The base of the ladder is 8 feet above the ground.

How high on the building will the ladder reach? Round your answer to the nearest tenth.

3 ACTIVITY: Finding Perimeters

Work with a partner.

Find the perimeter of each figure. Round your answer to the nearest tenth. Did you use the Pythagorean Theorem? If so, explain.

ACTIVITY: Writing a Formula

Work with a partner.

- **a.** Write a formula for the area of an equilateral triangle with side length *s*.
- **b.** Use your formula to find the area of an equilateral triangle with a side length of 10 inches.

-What Is Your Answer?

- **5. IN YOUR OWN WORDS** How can you use the Pythagorean Theorem to solve real-life problems?
- **6.** Describe a situation in which you could use the Pythagorean Theorem to help make decisions. Give an example of a real-life problem.

Use what you learned about using the Pythagorean Theorem to complete Exercises 3–5 on page 262.

s

6.5 Lesson

EXAMPLE

low You're Ready

Exercises 6-8

The park is 5 miles east of your home. The library is 4 miles north of the park. How far is your home from the library? Round your answer to the nearest tenth.

Plot a point for your home at the origin in a coordinate plane. Then plot points for the locations of the park and the library to form a right triangle.

Finding a Distance in a Coordinate Plane

$$a^2 + b^2 = c^2$$
Write the Pythagorean Theorem. $4^2 + 5^2 = c^2$ Substitute 4 for a and 5 for b. $16 + 25 = c^2$ Evaluate powers. $41 = c^2$ Add. $\sqrt{41} = \sqrt{c^2}$ Take positive square root of each side.

$$6.4 \approx c$$
 Use a calculator

Your home is about 6.4 miles from the library.

👂 On Your Own

1. The post office is 3 miles west of your home. Your school is 2 miles north of the post office. How far is your home from your school? Round your answer to the nearest tenth.

EXAMPLE 2 Real-Life Application

: The height of the firework is about 149.1 + 1.5 = 150.6 meters.

On Your Own

2. WHAT IF? In Example 2, the distance between you and the firework is 350 meters. Find the height of the firework. Round your answer to the nearest tenth.

A **Pythagorean triple** is a set of three positive integers *a*, *b*, and *c* where $a^2 + b^2 = c^2$.

Converse of the Pythagorean Theorem

If the equation $a^2 + b^2 = c^2$ is true for the side lengths of a triangle, then the triangle is a right triangle.

When using the converse of the Pythagorean Theorem, always substitute the length of the longest side for *c*.

EXAMPLE 3 Identifying a Right Triangle

Tell whether the given triangle is a right triangle.

On Your Own

6.5 Exercises

Tell whether the triangle with the given side lengths is a right triangle.

