

8.2

Essential Question How can you use addition or subtraction to

solve an inequality?

ACTIVITY: Quarterback Passing Efficiency

Work with a partner. The National Collegiate Athletic Association (NCAA) uses the following formula to rank the passing efficiency *P* of quarterbacks.

Which of the following equations or inequalities are true relationships among the variables? Explain your reasoning.

a.	$C + N \le A$	b.	$C+N \leq A$	c.	$T \leq C$	d.	$T \leq C$
e.	$N \leq A$	f.	A > T	g.	$A-C\geq {\rm M}$	h.	A = C + N + M

2

ACTIVITY: Quarterback Passing Efficiency

Work with a partner. Which of the following quarterbacks has a passing efficiency rating that satisfies the inequality P > 100? Show your work.

Player	Attempts	Completions	Yards	Touchdowns	Interceptions
А	149	88	1065	7	9
В	400	205	2000	10	3
С	426	244	3105	30	9
D	188	89	1167	6	15

ACTIVITY: Finding Solutions of Inequalities

Work with a partner. Use the passing efficiency formula to create a passing record that makes the inequality true. Then describe the values of *P* that make the inequality true.

a. *P* < 0

Attempts	Completions	Yards	Touchdowns	Interceptions

b. $P + 100 \ge 250$

Attempts	Completions	Yards	Touchdowns	Interceptions

c. 180 < P - 50

Attempts	Completions	Yards	Touchdowns	Interceptions

d. $P + 30 \ge 120$

Attempts	Completions	Yards	Touchdowns	Interceptions

e. P - 250 > -80

Attempts	Completions	Yards	Touchdowns	Interceptions

-What Is Your Answer?

- **4.** Write a rule that describes how to solve inequalities like those in Activity 3. Then use your rule to solve each of the inequalities in Activity 3.
- **5. IN YOUR OWN WORDS** How can you use addition or subtraction to solve an inequality?
- **6.** How is solving the inequality x + 3 < 4 similar to solving the equation x + 3 = 4? How is it different?

Practice

Use what you learned about solving inequalities using addition or subtraction to complete Exercises 3–5 on page 322.

Addition Property of Inequality

Words If you add the same number to each side of an inequality, the inequality remains true.

Numbers $-3 < 2$	Algebra	x - 3 > -10
+4 $+4$		+3 +3
1 < 6		x > -7

Subtraction Property of Inequality

Words If you subtract the same number from each side of an inequality, the inequality remains true.

Numbers $-3 < 1$	Algebra $x + 7 > -20$
-5 -5	-7 -7
-8 < -4	x > -27

These properties are also true for \leq and \geq .

Study Tip 🦯

You can solve inequalities the same way you solve equations. Use inverse operations to get the variable by itself. **EXAMPLE 2** Solving an Inequality Using Subtraction

Solve -8 > 1.4 + x. Graph the solution.

EXAMPLE 3 Real-Life Application

On a train, carry-on bags can weigh no more than 50 pounds. Your bag weighs 24.8 pounds. Write and solve an inequality that represents the amount of weight you can add to your bag.

Words	Weight of your bag	plus	amount of weight you can add	is no more than	the weight limit.
Variable	Let <mark>w</mark> be th	le <mark>pos</mark>	sible weight you ca	<mark>n add</mark> .	
Inequality	24.8	+	w	\leq	50
24.8	$+ w \le 50$	١	Write the inequality.		
- 24.8	<u>- 24</u> .	<u>8</u> 9	Subtract 24.8 from each	side.	
	$w \le 25.2$	9	Simplify.		

• You can add no more than 25.2 pounds to your bag.

👂 On Your Own

7. WHAT IF? Your carry-on bag weighs 32.5 pounds. Write and solve an inequality that represents the possible weight you can add to your bag.

8.2 Exercises

Vocabulary and Concept Check

- **1. REASONING** Is the inequality $r 5 \le 8$ the same as $8 \le r 5$? Explain.
- **2.** WHICH ONE DOESN'T BELONG? Which inequality does *not* belong with the other three? Explain your reasoning.

Use the formula in Activity 1 to create a passing record that makes the inequality true.

3. $P \ge 180$ **4.** P + 40 < 110 **5.** $280 \le P - 20$

Solve the inequality. Graph the solution.

1 2 6. $y - 3 \ge 7$	7. $t - 8 > -4$	8. <i>n</i> + 11 ≤ 20
9. $a + 7 > -1$	10. $5 < v - \frac{1}{2}$	11. $\frac{1}{5} > d + \frac{4}{5}$
12. $-\frac{2}{3} \le g - \frac{1}{3}$	13. $m + \frac{7}{4} \le \frac{11}{4}$	14. 11.2 ≤ <i>k</i> + 9.8
15. $h - 1.7 < -3.2$	16. $0 > s + \pi$	17. $5 \ge u - 4.5$

18. ERROR ANALYSIS Describe and correct the error in graphing the solution of the inequality.

- **19. PELICAN** The maximum volume of a great white pelican's bill is about 700 cubic inches.
 - **a.** A pelican scoops up 100 cubic inches of water. Write and solve an inequality that represents the additional volume the bill can contain.
 - **b.** A pelican's stomach can contain about one-third the maximum amount that its bill can contain. Write an inequality that represents the volume of the pelican's stomach.

Write and solve an inequality that represents the value of x.

- **23. REASONING** The solution of $w + c \le 8$ is $w \le 3$. What is the value of *c*?
- **24. FENCE** The hole for a fence post is 2 feet deep. The top of the fence post needs to be at least 4 feet above the ground. Write and solve an inequality that represents the required length of the fence post.

- **25. VIDEO GAME** You need at least 12,000 points to advance to the next level of a video game.
 - **a.** Write and solve an inequality that represents the number of points you need to advance.
 - **b.** You find a treasure chest that increases your score by 60%. How does this change the inequality?

CURRENT SCORE: 4500

- **26. POWER** A circuit overloads at 1800 watts of electricity. A microwave that uses 1100 watts of electricity is plugged into the circuit.
 - **a.** Write and solve an inequality that represents the additional number of watts you can plug in without overloading the circuit.
 - **b.** In addition to the microwave, what two appliances in the table can you plug in without overloading the circuit?
- **27.** The maximum surface area of the solid is 15π square millimeters. Write and solve an inequality

that represents the height of the cylinder.

Appliance	Watts
Clock radio	50
Blender	300
Hot plate	1200
Toaster	800

Fair Game Review What you learned in previous grades & lessons

Solve the equation.

28. $6 = 3x$	29. $\frac{r}{5} = 2$	30. 4 <i>c</i> = 15	31. $8 = \frac{2}{3}b$
32. MULTIPLE C	CHOICE Which fraction is	equivalent to 3.8?	
(A) $\frac{5}{19}$	B $\frac{19}{5}$	(c) $\frac{12}{15}$	(D) $\frac{12}{5}$