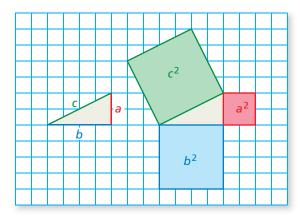
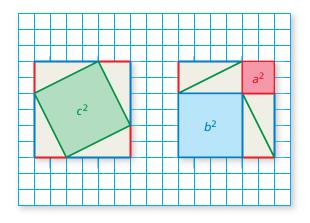
6.2 The Pythagorean Theorem

Essential Question How are the lengths of the sides of a right

triangle related?

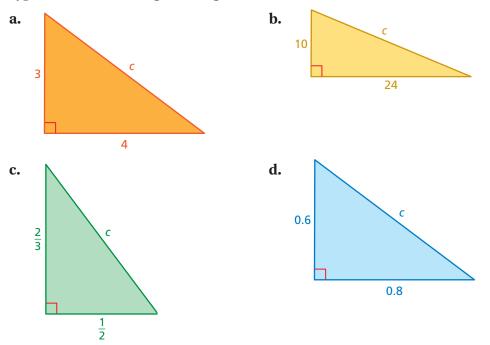
Pythagoras was a Greek mathematician and philosopher who discovered one of the most famous rules in mathematics. In mathematics, a rule is called a **theorem**. So, the rule that Pythagoras discovered is called the Pythagorean Theorem.

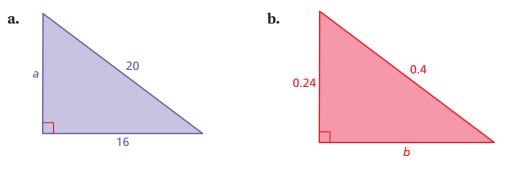



Pythagoras (с. 570 в.с.-с. 490 в.с.)

ACTIVITY: Discovering the Pythagorean Theorem

Work with a partner.


- **a.** On grid paper, draw any right triangle. Label the lengths of the two shorter sides (the **legs**) *a* and *b*.
- **b.** Label the length of the longest side (the **hypotenuse**) *c*.
- **c**. Draw squares along each of the three sides. Label the areas of the three squares a^2 , b^2 , and c^2 .
- **d.** Cut out the three squares. Make eight copies of the right triangle and cut them out. Arrange the figures to form two identical larger squares.
- e. What does this tell you about the relationship among a^2 , b^2 , and c^2 ?


2 ACTIVITY: Finding the Length of the Hypotenuse

Work with a partner. Use the result of Activity 1 to find the length of the hypotenuse of each right triangle.

ACTIVITY: Finding the Length of a Leg

Work with a partner. Use the result of Activity 1 to find the length of the leg of each right triangle.

-What Is Your Answer?

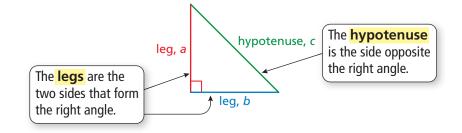
4. IN YOUR OWN WORDS How are the lengths of the sides of a right triangle related? Give an example using whole numbers.

3

Use what you learned about the Pythagorean Theorem to complete Exercises 3–5 on page 240.

6.2 Lesson

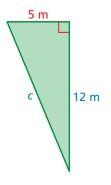
Key Vocabulary ◀)) theorem, *p. 236* legs, *p. 238* hypotenuse, *p. 238* Pythagorean Theorem, *p. 238*


Study Tip

In a right triangle, the legs are the shorter sides and the hypotenuse is always the longest side.

Sides of a Right Triangle

The sides of a right triangle have special names.

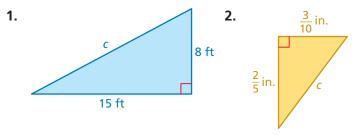

The Pythagorean Theorem

Words In any right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

Algebra $a^2 + b^2 = c^2$

EXAMPLE (1) Finding the Length of a Hypotenuse

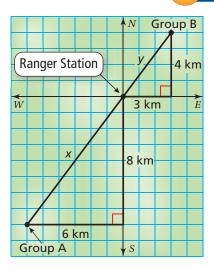
Find the length of the hypotenuse of the triangle.



$a^2 + b^2 = c^2$	Write the Pythagorean Theorem.
$5^2 + 12^2 = c^2$	Substitute 5 for <i>a</i> and 12 for <i>b</i> .
$25 + 144 = c^2$	Evaluate powers.
$169 = c^2$	Add.
$\sqrt{169} = \sqrt{c^2}$	Take positive square root of each side.
13 = c	Simplify.

The length of the hypotenuse is 13 meters.

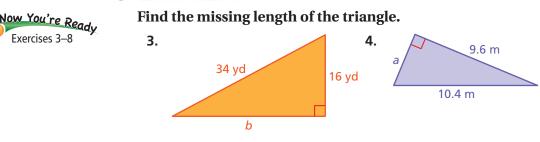
🔵 On Your Own


Find the length of the hypotenuse of the triangle.

Finding the Length of a Leg **EXAMPLE** 2 Find the missing length of the triangle. $a^2 + b^2 = c^2$ Write the Pythagorean Theorem. $a^2 + 2.1^2 = 2.9^2$ Substitute 2.1 for b and 2.9 for c. 2.1 cm $a^2 + 4.41 = 8.41$ Evaluate powers. $a^2 = 4$ Subtract 4.41 from each side. 2.9 cm a = 2Take positive square root of each side.

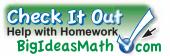
• The length of the leg is 2 centimeters.

EXAMPLE 3 Standardized Test Practice

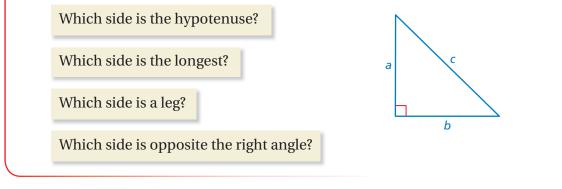

Hiking Group A leaves a ranger station and hikes 8 kilometers south then 6 kilometers west. Group B leaves the station and hikes 3 kilometers east then 4 kilometers north. Using the figure, how far apart are the two groups of hikers?

The distance between the groups is the sum of the hypotenuses, *x* and *y*. Use the Pythagorean Theorem to find *x* and *y*.

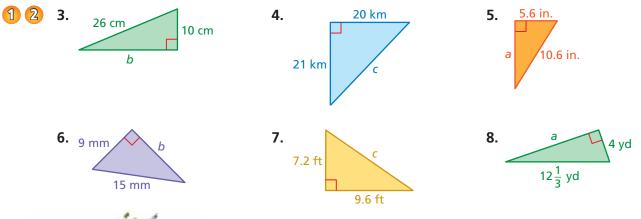
$a^2 + b^2 = c^2$	Write the Pythagorean Theorem.	$a^2 + b^2 = c^2$
$6^2 + 8^2 = x^2$	Substitute.	$3^2 + 4^2 = y^2$
$36 + 64 = x^2$	Evaluate powers.	$9 + 16 = y^2$
$100 = x^2$	Add.	$25 = y^2$
10 = x	Take positive square root of each side.	5 = y


The distance between the groups of hikers is 10 + 5 = 15 kilometers. So, the correct answer is **(C)**.

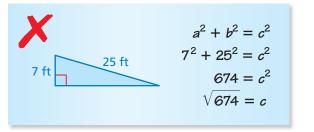
On Your Own


5. WHAT IF? In Example 3, Group A hikes 12 kilometers south and 9 kilometers west. How far apart are the hikers?

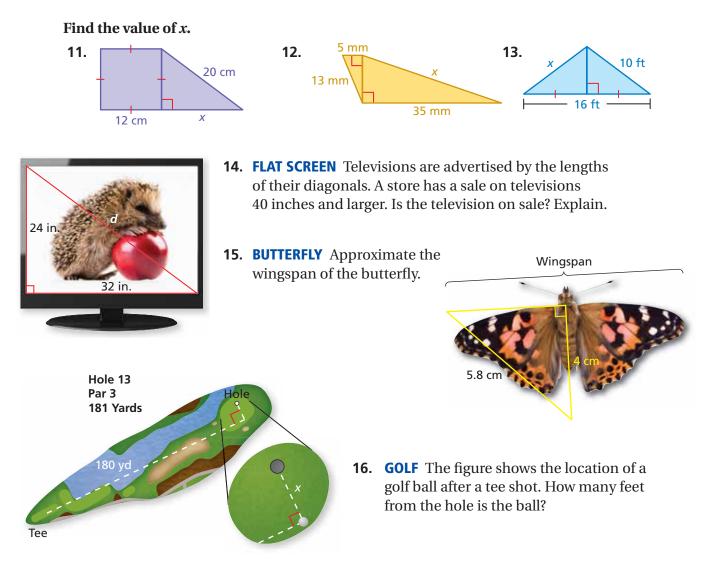
6.2 Exercises


Vocabulary and Concept Check

- **1. VOCABULARY** In a right triangle, how can you tell which sides are the legs and which side is the hypotenuse?
- 2. DIFFERENT WORDS, SAME QUESTION Which is different? Find "both" answers.



Practice and Problem Solving


Find the missing length of the triangle.

- 5.6 ft - 3.3 ft - 10
 - **9. ERROR ANALYSIS** Describe and correct the error in finding the missing length of the triangle.

10. TREE SUPPORT How long is the wire that supports the tree?

- **17. SNOWBALLS** You and a friend stand back-to-back. You run 20 feet forward then 15 feet to your right. At the same time, your friend runs 16 feet forward then 12 feet to her right. She stops and hits you with a snowball.
 - **a.** Draw the situation in a coordinate plane.
 - **b.** How far does your friend throw the snowball?
- **18.** Algebra The legs of a right triangle have lengths of 28 meters and 21 meters. The hypotenuse has a length of 5x meters. What is the value of x?

Fair Game Review What you learned in previous grades & lessons						
Find the square root(s). (Section 6.1)						
	19. $\pm \sqrt{36}$	20. $-\sqrt{121}$	21. $\sqrt{169}$	22. $-\sqrt{225}$		
23. MULTIPLE CHOICE Which type of triangle can have an obtuse angle? <i>(Section 5.2)</i>						
	(A) equiang	gular 🖲 right	© isosceles	D equilateral		