
# **Review Key Vocabulary**

| square root, <i>p. 232</i>  |
|-----------------------------|
| perfect square, p. 232      |
| radical sign, <i>p. 232</i> |
| radicand, <i>p. 232</i>     |

theorem, *p. 236* legs, *p. 238* hypotenuse, *p. 238* Pythagorean Theorem, *p. 238*  irrational number, *p. 246* real numbers, *p. 246* Pythagorean triple, *p. 261* 

# **Review Examples and Exercises**

| 6.1 Finding Square Roots (pp. 230–235)                                                                                                                         |                                                        |                                                                                              |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| Find the square                                                                                                                                                | Find the square root(s).                               |                                                                                              |  |  |  |  |
| <b>a.</b> $-\sqrt{36}$                                                                                                                                         |                                                        |                                                                                              |  |  |  |  |
| : Because                                                                                                                                                      | Because $6^2 = 36$ , $-\sqrt{36} = -\sqrt{6^2} = -6$ . |                                                                                              |  |  |  |  |
| <b>b.</b> $\sqrt{1.96}$                                                                                                                                        |                                                        | $\sqrt{1.96}$ represents the <i>positive</i> square root.                                    |  |  |  |  |
| Because $1.4^2 = 1.96$ , $\sqrt{1.96} = \sqrt{1.4^2} = 1.4$ .                                                                                                  |                                                        |                                                                                              |  |  |  |  |
| <b>c.</b> $\pm \sqrt{\frac{16}{81}}$                                                                                                                           |                                                        | $\pm \sqrt{\frac{16}{81}}$ represents both the <i>positive</i><br>and negative square roots. |  |  |  |  |
| : Because $\left(\frac{4}{9}\right)^2 = \frac{16}{81}$ , $\pm \sqrt{\frac{16}{81}} = \pm \sqrt{\left(\frac{4}{9}\right)^2} = \frac{4}{9}$ and $-\frac{4}{9}$ . |                                                        |                                                                                              |  |  |  |  |
| Exercises                                                                                                                                                      |                                                        |                                                                                              |  |  |  |  |
| Find the two squ                                                                                                                                               | are roots of the number.                               |                                                                                              |  |  |  |  |
| <b>1.</b> 16                                                                                                                                                   | <b>2.</b> 900                                          | <b>3.</b> 2500                                                                               |  |  |  |  |
| Find the square root(s).                                                                                                                                       |                                                        |                                                                                              |  |  |  |  |
| <b>4.</b> $\sqrt{1}$                                                                                                                                           | <b>5.</b> $-\sqrt{\frac{9}{25}}$                       | <b>6.</b> $\pm \sqrt{1.96}$                                                                  |  |  |  |  |
| Evaluate the exp                                                                                                                                               | Evaluate the expression.                               |                                                                                              |  |  |  |  |
| <b>7.</b> $15 - 4\sqrt{16}$                                                                                                                                    | <b>8.</b> $\sqrt{\frac{54}{6}} + \frac{2}{3}$          | <b>9.</b> $10(\sqrt{81} - 12)$                                                               |  |  |  |  |



### Exercises

| Estimate to the nearest integer. |             |                        |                         |  |  |
|----------------------------------|-------------|------------------------|-------------------------|--|--|
| 12.                              | $\sqrt{14}$ | <b>13.</b> $\sqrt{90}$ | <b>14.</b> $\sqrt{175}$ |  |  |

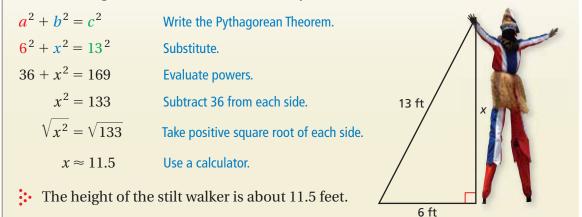
# 6.4

## Simplifying Square Roots (pp. 252–257)

## Simplify $\sqrt{28}$ .

| $\sqrt{28} = \sqrt{4 \cdot 7}$ $= \sqrt{4} \cdot \sqrt{7}$ | Factor using the greatest perfect square factor.<br>Use the Product Property of Square Roots. |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| $=2\sqrt{7}$                                               | Simplify.                                                                                     |  |
| Simplify $\sqrt{\frac{13}{64}}$ .                          |                                                                                               |  |
| $\sqrt{\frac{13}{64}} = \frac{\sqrt{13}}{\sqrt{64}}$       | Use the Quotient Property of Square Roots.                                                    |  |
| $=\frac{\sqrt{13}}{8}$                                     | Simplify.                                                                                     |  |

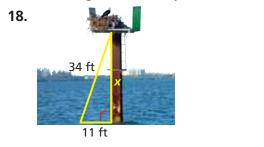
# Exercises

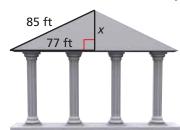

Simplify the expression.

| <b>15.</b> $\sqrt{\frac{99}{100}}$ | <b>16.</b> $\sqrt{96}$ | <b>17.</b> $\sqrt{75}$ |
|------------------------------------|------------------------|------------------------|
|------------------------------------|------------------------|------------------------|

6.5

#### Using the Pythagorean Theorem (pp. 258–263)


Find the height of the stilt walker. Round your answer to the nearest tenth.




### Exercises

Find the height *x*. Round your answer to the nearest tenth, if necessary.

19.



