Review Key Vocabulary

power, p. 352 base, p. 352

exponent, p. 352 scientific notation, p. 378

Review Examples and Exercises

9.1 **Exponents** (pp. 350–355)

Write $(-4) \cdot (-4) \cdot (-4) \cdot y \cdot y$ using exponents.

Because -4 is used as a factor 3 times, its exponent is 3. Because y is used as a factor 2 times, its exponent is 2.

So,
$$(-4) \cdot (-4) \cdot (-4) \cdot y \cdot y = (-4)^3 y^2$$
.

Exercises

Write the product using exponents.

1.
$$(-9) \cdot (-9) \cdot (-9) \cdot (-9) \cdot (-9)$$
 2. $2 \cdot 2 \cdot 2 \cdot n \cdot n$

Evaluate the expression.

4.
$$-\left(\frac{1}{2}\right)^4$$

5.
$$\left| \frac{1}{2} (16 - 6^3) \right|$$

Product of Powers Property (pp. 356–361)

a.
$$\left(-\frac{1}{8}\right)^7 \cdot \left(-\frac{1}{8}\right)^4 = \left(-\frac{1}{8}\right)^{7+4}$$
 The base is $-\frac{1}{8}$. Add the exponents.
$$= \left(-\frac{1}{8}\right)^{11}$$
 Simplify.

b.
$$(3m)^2 = 3m \cdot 3m$$
 Write as repeated multiplication.
 $= (3 \cdot 3) \cdot (m \cdot m)$ Use properties of multiplication.
 $= 3^{1+1} \cdot m^{1+1}$ The bases are 3 and m . Add the exponents.
 $= 3^2 \cdot m^2 = 9m^2$ Simplify.

Exercises

Simplify the expression.

6.
$$p^5 \cdot p^2$$
 7. $(n^{11})^2$

7.
$$(n^{11})^2$$

8.
$$(5y)^3$$

9.
$$(-2k)^4$$

Quotient of Powers Property (pp. 362–367)

a.
$$\frac{(-4)^9}{(-4)^6} = (-4)^{9-6}$$
 The base is -4 . Subtract the exponents.

$$=(-4)^3$$
 Simplify.

b.
$$\frac{x^4}{x^3} = x^{4-3}$$
 The base is x . Subtract the exponents.

$$=x^1$$

$$= x$$
 Simplify.

Exercises

Simplify the expression. Write your answer as a power.

10.
$$\frac{8^8}{8^3}$$

11.
$$\frac{5^2 \cdot 5^9}{5}$$

12.
$$\frac{w^8}{w^7} \cdot \frac{w^5}{w^2}$$

Simplify the expression.

13.
$$\frac{2^2 \cdot 2^5}{2^3}$$

14.
$$\frac{(6c)^3}{c}$$

15.
$$\frac{m^8}{m^6} \cdot \frac{m^{10}}{m^9}$$

2.4 Zero and Negative Exponents (pp. 370–375)

a.
$$10^{-3} = \frac{1}{10^3}$$
 Definition of negative exponent

$$=\frac{1}{1000}$$
 Evaluate power.

b.
$$(-0.5)^{-5} \cdot (-0.5)^5 = (-0.5)^{-5+5}$$
 Add the exponents.
= $(-0.5)^0$ Simplify.

Evaluate the expression.

16.
$$2^{-4}$$

18.
$$\frac{8^2}{8^4}$$

19.
$$(-12)^{-7} \cdot (-12)^7$$
 20. $\frac{1}{7^9} \cdot \frac{1}{7^{-6}}$

20.
$$\frac{1}{7^9} \cdot \frac{1}{7^{-6}}$$

21.
$$\frac{9^4 \cdot 9^{-2}}{9^2}$$

Reading Scientific Notation (pp. 376–381)

a. Write 5.9×10^4 in standard form.

$$5.9 \times 10^4 = 59,000$$

Move decimal point 4 places to the right.

b. Write 7.31×10^{-6} in standard form.

$$7.31 \times 10^{-6} = 0.00000731$$

Move decimal point 6 places to the left.

Exercises

Tell whether the number is written in scientific notation. Explain.

22.
$$0.9 \times 10^9$$

23.
$$3.04 \times 10^{-11}$$

24.
$$15 \times 10^{26}$$

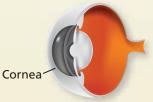
Write the number in standard form.

25.
$$2 \times 10^7$$

26.
$$4.8 \times 10^{-3}$$

26.
$$4.8 \times 10^{-3}$$
 27. 6.25×10^{5}

Writing Scientific Notation (pp. 382–387) 9.6


a. In 2010, the population of the United States was about 309,000,000. Write this number in scientific notation.

The number is greater than 1. So, move the decimal point 8 places to the left.

$$309,000,000 = 3.09 \times 10^8$$

The exponent is positive.

b. The cornea of an eye is 0.00056 meter thick. Write this number in scientific notation.

The number is between 0 and 1. So, move the decimal point 4 places to the right.

$$0.00056 = 5.6 \times 10^{-4}$$

The exponent is negative

Exercises

Write the number in scientific notation.

Multiply. Write your answer in scientific notation.

31.
$$(4 \times 10^3) \times (2 \times 10^2)$$

32.
$$(1.5 \times 10^{-9}) \times (8 \times 10^{-3})$$

391