12.3 Angles of Polygons

Essential Question: How can you find the sum of the interior angle measures and the sum of the exterior angle measures of a polygon?

ACTIVITY: Exploring the Interior Angles of a Polygon

Work with a partner. In parts (a) – (e), identify each polygon and the number of sides n. Then find the sum of the interior angle measures of the polygon.

a. Polygon: ______ Number of sides: $n =$ ______

Draw a line segment on the figure that divides it into two triangles. Is there more than one way to do this? Explain.

What is the sum of the interior angle measures of each triangle?

What is the sum of the interior angle measures of the figure?

b. ______

c. ______

d. ______

e. ______

f. REPEATED REASONING: Use your results to complete the table. Then find the sum of the interior angle measures of a polygon with 12 sides.

<table>
<thead>
<tr>
<th>Number of Sides, n</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Triangles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle Sum, S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geometry

In this lesson, you will
- find the sum of the interior angle measures of polygons.
- understand that the sum of the exterior angle measures of a polygon is 360°.
- find the measures of interior and exterior angles of polygons.

Chapter 12 Angles and Triangles
A polygon is **convex** when every line segment connecting any two vertices lies entirely inside the polygon. A polygon is **concave** when at least one line segment connecting any two vertices lies outside the polygon.

ACTIVITY: Exploring the Exterior Angles of a Polygon

Work with a partner.

a. Draw a convex pentagon. Extend the sides to form the exterior angles. Label one exterior angle at each vertex \(A, B, C, D,\) and \(E,\) as shown.

b. Cut out the exterior angles. How can you join the vertices to determine the sum of the angle measures? What do you notice?

c. **REPEATED REASONING** Repeat the procedure in parts (a) and (b) for each figure below.

What can you conclude about the sum of the measures of the exterior angles of a convex polygon? Explain.

What Is Your Answer?

3. **STRUCTURE** Use your results from Activity 1 to write an expression that represents the sum of the interior angle measures of a polygon.

4. **IN YOUR OWN WORDS** How can you find the sum of the interior angle measures and the sum of the exterior angle measures of a polygon?

Use what you learned about angles of polygons to complete Exercises 4–6 on page 547.
A polygon is a closed plane figure made up of three or more line segments that intersect only at their endpoints.

Key Vocabulary
- convex polygon, p. 543
- concave polygon, p. 543
- regular polygon, p. 545

EXAMPLE 1

Finding the Sum of Interior Angle Measures

Find the sum of the interior angle measures of the school crossing sign.

The sign is in the shape of a pentagon. It has 5 sides.

\[S = (n - 2) \cdot 180^\circ \]

Write the formula.

\[= (5 - 2) \cdot 180^\circ \]

Substitute 5 for \(n \).

\[= 3 \cdot 180^\circ \]

Subtract.

\[= 540^\circ \]

Multiply.

The sum of the interior angle measures is 540°.

On Your Own

Find the sum of the interior angle measures of the green polygon.

1.
2.

544 Chapter 12 Angles and Triangles

Reading

For polygons whose names you have not learned, you can use the phrase “\(n \)-gon,” where \(n \) is the number of sides. For example, a 15-gon is a polygon with 15 sides.
EXAMPLE 2 Finding an Interior Angle Measure of a Polygon

Find the value of \(x\).

Step 1: The polygon has 7 sides. Find the sum of the interior angle measures.

\[
S = (n - 2) \cdot 180^\circ \quad \text{Write the formula.}
\]

\[
= (7 - 2) \cdot 180^\circ \quad \text{Substitute 7 for } n.
\]

\[
= 900^\circ \quad \text{Simplify. The sum of the interior angle measures is } 900^\circ.
\]

Step 2: Write and solve an equation.

\[
140 + 145 + 115 + 130 + 128 + x = 900
\]

\[
778 + x = 900
\]

\[
x = 122
\]

.: The value of \(x\) is 122.

On Your Own

Find the value of \(x\).

3.

4.

5.

In a regular polygon, all the sides are congruent, and all the interior angles are congruent.

EXAMPLE 3 Real-Life Application

A cloud system discovered on Saturn is in the approximate shape of a regular hexagon. Find the measure of each interior angle of the hexagon.

Step 1: A hexagon has 6 sides. Find the sum of the interior angle measures.

\[
S = (n - 2) \cdot 180^\circ \quad \text{Write the formula.}
\]

\[
= (6 - 2) \cdot 180^\circ \quad \text{Substitute 6 for } n.
\]

\[
= 720^\circ \quad \text{Simplify. The sum of the interior angle measures is } 720^\circ.
\]

Step 2: Divide the sum by the number of interior angles, 6.

\[
720^\circ \div 6 = 120^\circ
\]

.: The measure of each interior angle is 120°.
Find the measures of the exterior angles of each polygon.

6. octagon
7. decagon
8. 18-gon

Key Idea

Exterior Angle Measures of a Polygon

Words
The sum of the measures of the exterior angles of a convex polygon is 360°.

Algebra

\[w + x + y + z = 360 \]

EXAMPLE 4

Finding Exterior Angle Measures

Find the measures of the exterior angles of each polygon.

a.

\[\begin{align*}
 50^\circ + 127^\circ + 91^\circ + x &= 360^\circ \\
 x + 268^\circ &= 360^\circ \\
 x &= 92^\circ
\end{align*} \]

So, the measures of the exterior angles are 92°, 50°, 127°, and 91°.

b.

\[\begin{align*}
 124^\circ + z + (z + 26)^\circ &= 360^\circ \\
 2z + 150^\circ &= 360^\circ \\
 z &= 105^\circ
\end{align*} \]

So, the measures of the exterior angles are 124°, 105°, and $(105 + 26)^\circ = 131^\circ$.

On Your Own

9. Find the measures of the exterior angles of the polygon.
1. **VOCABULARY** Draw a regular polygon that has three sides.

2. **WHICH ONE DOESN’T BELONG?** Which figure does not belong with the other three? Explain your reasoning.

 ![Diagram of shapes]

3. **DIFFERENT WORDS, SAME QUESTION** Which is different? Find “both” answers.

 - What is the measure of an interior angle of a regular pentagon?
 - What is the sum of the interior angle measures of a convex pentagon?
 - What is the sum of the interior angle measures of a regular pentagon?
 - What is the sum of the interior angle measures of a concave pentagon?

Practice and Problem Solving

Use triangles to find the sum of the interior angle measures of the polygon.

4.
5.
6.

Find the sum of the interior angle measures of the polygon.

7.
8.
9.

10. **ERROR ANALYSIS** Describe and correct the error in finding the sum of the interior angle measures of a 13-gon.

 \[S = n \cdot 180^\circ \]
 \[= 13 \cdot 180^\circ \]
 \[= 2340^\circ \]

11. **NUMBER SENSE** Can a pentagon have interior angles that measure 120°, 105°, 65°, 150°, and 95°? Explain.
Find the measures of the interior angles.

12. \(\angle x = 137^\circ \), \(\angle x = 125^\circ \), \(\angle x = 155^\circ \), \(\angle x = 137^\circ \)

13. \(x = x = x = x \)

14. \(45^\circ, 135^\circ, 3x, x \)

15. **REASONING** The sum of the interior angle measures in a regular polygon is 1260°. What is the measure of one of the interior angles of the polygon?

Find the measure of each interior angle of the regular polygon.

16. **YIELD**

17. **ERROR ANALYSIS** Describe and correct the error in finding the measure of each interior angle of a regular 20-gon.

\[S = (n - 2) \cdot 180^\circ \\
= (20 - 2) \cdot 180^\circ \\
= 3600^\circ / 20 \\
= 180^\circ \]

The measure of each interior angle is 180°.

18. **FIRE HYDRANT** A fire hydrant bolt is in the shape of a regular pentagon.

 a. What is the measure of each interior angle?

 b. Why are fire hydrants made this way?

20. **PROBLEM SOLVING** The interior angles of a regular polygon each measure 165°. How many sides does the polygon have?

Find the measures of the exterior angles of the polygon.

22. \(x = 110^\circ \), \(x = 140^\circ \)

23. \(85^\circ, 93^\circ, 107^\circ, w \)

24. \((z + 45)^\circ, 55^\circ, 78^\circ, z^\circ \)

25. **REASONING** What is the measure of an exterior angle of a regular hexagon? Explain.
Find the measures of the exterior angles of the polygon.

26. \[n \]

27.

28.

29. **STAINED GLASS** The center of the stained glass window is in the shape of a regular polygon. What is the measure of each interior angle of the polygon? What is the measure of each exterior angle?

30. **PENTAGON** Draw a pentagon that has two right interior angles, two 45° interior angles, and one 270° interior angle.

31. **GAZEBO** The floor of a gazebo is in the shape of a heptagon. Four of the interior angles measure 135°. The other interior angles have equal measures. Find their measures.

32. **MONEY** The border of a Susan B. Anthony dollar is in the shape of a regular polygon.
 a. How many sides does the polygon have?
 b. What is the measure of each interior angle of the border? Round your answer to the nearest degree.

33. **Geometry** When tiles can be used to cover a floor with no empty spaces, the collection of tiles is called a **tessellation**.
 a. Create a tessellation using equilateral triangles.
 b. Find two more regular polygons that form tessellations.
 c. Create a tessellation that uses two different regular polygons.
 d. Use what you know about interior and exterior angles to explain why the polygons in part (c) form a tessellation.

Fair Game Review What you learned in previous grades & lessons

Solve the proportion. *(Section 5.4)*

34. \(\frac{x}{12} = \frac{3}{4} \)
35. \(\frac{14}{21} = \frac{x}{3} \)
36. \(\frac{9}{x} = \frac{6}{2} \)
37. \(\frac{10}{4} = \frac{15}{x} \)

38. **MULTIPLE CHOICE** The ratio of tulips to daisies is 3 : 5. Which of the following could be the total number of tulips and daisies? *(Skills Review Handbook)*

 - A 6
 - B 10
 - C 15
 - D 16