Big Ideas Math ${ }^{\circledR}$

Log Race

- Materials:

- 6-sided die
- Game board
- 2-4 chips
- Game cards
- Paper
- Pencil

- Directions:

Students play in teams of 2-4 players. Players take turns rolling the die and moving their chip the corresponding number of spaces. The space the player lands on designates which type of card the student draws. The student draws the top card from the appropriate pile and follows the directions on the game board. The rest of the team checks the answer. A correct answer earns the player the opportunity to roll the die and move his/her chip next round. An incorrect answer results in a lost turn the next round. The used card is then placed on the bottom of the appropriate pile.

Who Wins?

The player who reaches the FINISH first, or is the closest to the FINISH when time is called, wins.

- Tip:

If a color copier or printer is not available, copy each sheet of cards on different colored paper (use game cards for black and white printer).

Directions for Game Markers:

Game markers are sturdy enough to be made out of copy paper, but for best results, print on card stock and cut out.

Slide one cut slit into the other to form an " X " shape so the marker will stand.

Directions for Game board:
Game board size is 11 "x 17 ". Tape game board top and bottom into a manila file folder. That way you can just fold it up with the cards and markers to store for later use. If you do not have 11 " $\times 17^{\prime \prime}$ tabloid paper available you can print each side out on $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ paper and tape the game board in the center.
When printing out the game board DO NOT SCALE TO FIT PAGE on the printer settings

"SOLVE" Log Race Game Cards FOR COLOR PRINTER

"CONDENSE" Log Race Game Cards -
FOR BLACK AND WHITE PRINTER - PRINT ON GREEN PAPER

"EXPAND" Log Race Game Cards FOR BLACK AND WHITE PRINTER - PRINT ON PINK PAPER

"SOLVE" Log Race Game Cards FOR BLACK AND WHITE PRINTER - PRINT ON ORANGE PAPER

REWRITE AS EXP

$\log _{3} 27=3 \rightarrow 3^{3}=27$
$\log _{9} 729=3 \rightarrow 9^{3}=729$
$\log _{4} 16=2 \rightarrow 4^{2}=16$
$\log _{1 / 9} 81=-2 \rightarrow\left(\frac{1}{9}\right)^{-2}=81$
$\log _{1 / 9} \frac{1}{3}=\frac{1}{2} \rightarrow\left(\frac{1}{9}\right)^{1 / 2}=\frac{1}{3}$
$\log _{1 / 9} 3=-\frac{1}{2} \rightarrow\left(\frac{1}{9}\right)^{-1 / 2}=3$
$\log _{2} \frac{1}{4}=-2 \rightarrow 2^{-2}=\frac{1}{4}$
$\log _{6} 1=0 \rightarrow 6^{0}=1$
$\log 10,000=4 \rightarrow 10^{4}=10,000$
$\log \frac{1}{100}=-2 \rightarrow 10^{-2}=\frac{1}{100}$
$\log _{12} \frac{1}{144}=-2 \rightarrow 12^{-2}=\frac{1}{144}$
$\log _{3} 81=4 \rightarrow 3^{4}=81$
$\log _{4} 64=3 \rightarrow 4^{3}=64$
$\log _{4} 4=1 \rightarrow 4^{1}=4$
$\log _{4} 2=\frac{1}{2} \rightarrow 4^{1 / 2}=2$
$\log _{4} \frac{1}{2}=-\frac{1}{2} \rightarrow 4^{-1 / 2}=\frac{1}{2}$
$\log _{8} 64=2 \rightarrow 8^{2}=64$
$\log _{5} \frac{1}{625}=-4 \rightarrow 5^{-4}=\frac{1}{625}$
$\log _{12} \frac{1}{12}=-1 \rightarrow 12^{-1}=\frac{1}{12}$
$\log _{7} 343=3 \rightarrow 7^{3}=343$
$\log _{2} 128=7 \rightarrow 2^{7}=128$
$\log _{3} 6561=8 \rightarrow 3^{8}=6561$

REWRITE AS LOG

$7^{4}=2401 \rightarrow \log _{7} 2401=4$
$12^{2}=144 \rightarrow \log _{12} 144=2$
$4^{-3}=\frac{1}{64} \rightarrow \log _{4} \frac{1}{64}=-3$
$10^{3}=1000 \rightarrow \log 1000=3$
$3^{7}=2187 \rightarrow \log _{3} 2187=7$
$7^{-2}=\frac{1}{49} \rightarrow \log _{7} \frac{1}{49}=-2$
$\left(\frac{1}{16}\right)^{1 / 2}=\frac{1}{4} \rightarrow \log _{1 / 16} \frac{1}{4}=\frac{1}{2}$
$\left(\frac{1}{64}\right)^{1 / 3}=\frac{1}{4} \rightarrow \log _{1 / 64} \frac{1}{4}=\frac{1}{3}$
$\left(\frac{1}{4}\right)^{-1 / 2}=2 \rightarrow \log _{1 / 4} 2=-\frac{1}{2}$
$\left(\frac{1}{4}\right)^{1 / 2}=\frac{1}{2} \rightarrow \log _{1 / 4} \frac{1}{2}=\frac{1}{2}$
$\left(\frac{1}{64}\right)^{2 / 3}=\frac{1}{16} \rightarrow \log _{1 / 64} \frac{1}{16}=\frac{2}{3}$
$\left(\frac{1}{64}\right)^{-2 / 3}=16 \rightarrow \log _{1 / 64} 16=-\frac{2}{3}$
$11^{2}=121 \rightarrow \log _{11} 121=2$
$3^{-4}=\frac{1}{81} \rightarrow \log _{3} \frac{1}{81}=-4$
$4^{4}=256 \rightarrow \log _{4} 256=4$
$4^{-4}=\frac{1}{256} \rightarrow \log _{4} \frac{1}{256}=-4$
$256^{1 / 4}=4 \rightarrow \log _{256} 4=\frac{1}{4}$
$256^{-1 / 4}=\frac{1}{4} \rightarrow \log _{256} \frac{1}{4}=-\frac{1}{4}$
$7^{2}=49 \rightarrow \log _{7} 49=2$
$6^{3}=216 \rightarrow \log _{6} 216=3$
$6^{-3}=\frac{1}{216} \rightarrow \log _{6} \frac{1}{216}=-3$
$2^{-3}=\frac{1}{8} \rightarrow \log _{2} \frac{1}{8}=-3$

CONDENSE

$\log 3+\log 11 \rightarrow \log 33$
$\log _{3} 7+\log _{3} y \rightarrow \log _{3} 7 y$
$\log _{5} 11-\log _{5} x \rightarrow \log _{5} \frac{11}{x}$
$\log _{3} y-\log _{3} 4 \rightarrow \log _{3} \frac{y}{4}$
$\log _{3} 11+6 \log _{3} x \rightarrow \log _{3} 11 x^{6}$
$\frac{1}{2} \log _{4} x-3 \log _{4} y \rightarrow \log _{4} \frac{\sqrt{x}}{y^{3}}$
$6 \log _{4} y+4 \log _{4} x \rightarrow \log _{4} \frac{y^{6}}{x^{4}}$
$7 \ln 2-3 \ln 4 \rightarrow \ln \frac{128}{81}$
$\ln 11+6 \ln x \rightarrow \ln 11 x^{6}$
$\ln 8-3 \ln x \rightarrow \ln \frac{8}{x^{3}}$
$3 \log 8+7 \log x \rightarrow \log 512 x^{7}$
$2 \log _{4} 9+3 \log _{4} y-3 \log _{4} x \rightarrow \log _{4} \frac{81 y^{3}}{x^{3}}$
$\log 10+4 \log x-\frac{1}{3} \log y \rightarrow \log \frac{x^{4}}{\sqrt[3]{y}}$
$5 \log _{3} x-2 \log _{3} 12-4 \log _{3} y \rightarrow \log _{3} \frac{x^{5}}{144 y^{4}}$
$2 \ln 10+3 \ln x+2 \ln y \rightarrow \ln 100 x^{3} y^{2}$
$\frac{1}{2} \log 64-5 \log x \rightarrow \log \frac{8}{x^{5}}$
$\frac{1}{3} \log 64+9 \log x+3 \log y \rightarrow \log 4 x^{9} y^{3}$
$\frac{2}{3} \log 64+4 \log 2-7 \log x \rightarrow \log \frac{256}{x^{7}}$
$2 \ln 11-9 \ln y-\frac{1}{2} \ln x \rightarrow \ln \frac{121}{y^{9} \sqrt{x}}$
$9 \log _{4} x+3 \log _{4} 10-\frac{1}{3} \log _{4} y \rightarrow \log _{4} \frac{1000 x^{9}}{\sqrt[3]{y}}$

EXPAND

$\log _{3} 5 x \rightarrow \log _{3} 5+\log _{3} x$
$\log _{5} 2 y \rightarrow \log _{5} 2+\log _{5} y$
$\log _{6} 11 y \rightarrow \log _{6} 11+\log _{6} y$
$\log _{5} 9 x \rightarrow \log _{5} 9+\log _{5} x$
$\log _{7} \frac{x}{3} \rightarrow \log _{7} x-\log _{7} 3$
$\log _{3} \frac{7}{x} \rightarrow \log _{3} 7-\log _{3} x$
$\log 11 x^{2} \rightarrow \log 11+2 \log x$
$\ln 5 x^{3} \rightarrow \ln 5+3 \ln x$
$\log 7 y^{10} \rightarrow \log 7+10 \log y$
$\ln 9 y^{2} \rightarrow \ln 9+2 \ln y$
$\log 5 x^{8} \rightarrow \log 5+8 \log x$
$\ln 4 x^{2} \rightarrow \ln 4+2 \ln x$
$\log \frac{x}{2 y} \rightarrow \log x-\log 2-\log y$
$\log \frac{9 x}{y^{7}} \rightarrow \log 9+\log x-7 \log y$
$\ln \frac{6 x}{12 y^{2}} \rightarrow \ln 6+\ln x-\ln 12-2 \ln y$
$\ln \frac{4}{5 x} \rightarrow \ln 4-\ln 5-\ln x$
$\ln \frac{2 x}{4 y} \rightarrow \ln 2+\ln x-\ln 4-\ln y$
$\log _{2} 4 \sqrt{y} \rightarrow 2+\frac{1}{2} \log _{2} y$
$\log _{2} \sqrt[3]{8 x^{6}} \rightarrow 1+2 \log _{2} x$
$\log _{5} 2 \sqrt{x^{2} y^{3}} \rightarrow \log _{5} 2+\log _{5} x+\frac{3}{2} \log _{5} y$
$\log _{7} 3 \sqrt[3]{x^{6}} \rightarrow \log _{7} 3+2 \log _{7} x$

SOLVE

$8^{x}=32^{x+4} \rightarrow x=-10$
$27^{2 x}=81^{x-4} \rightarrow x=-8$
$64^{2 x-5}=1024^{x-2} \rightarrow x=5$
$216^{x-5}=36^{x+3} \rightarrow x=21$
$343^{x+1}=49^{2 x} \rightarrow x=3$
$81^{3 x+4}=729^{4 x-2} \rightarrow x=\frac{7}{3}$
$\ln (6 x-12)=\ln (5 x-5) \rightarrow x=7$
$\ln (11 x-5)=\ln (x+15) \rightarrow x=2$
$\log (-2 x-1)=\log (9 x+10) \rightarrow x=-1$
$\log (2 x+1)=\log (3 x-4) \rightarrow x=5$
$\ln (5 x+8)=\ln (11 x-10) \rightarrow x=3$
$\log _{4}(10 x-5)=\log _{4} 55 \rightarrow x=6$
$\log _{3}(7 x-1)=\log _{3} 13 \rightarrow x=2$
$\log _{2}(8 x+16)=7 \rightarrow x=14$
$\log _{7}(5 x-7)=3 \rightarrow x=70$
$\log _{9}(4 x+7)=2 \rightarrow x=18.5$
$\log _{4}(2 x-8)=2 \rightarrow x=12$
$\log _{5}(3 x+10)=4 \rightarrow x=205$
$\log _{3} x+\log _{3}(x-6)=3 \rightarrow x=9$
$\log _{5}(x+4)+\log _{5} x=1 \rightarrow x=1$

